Bayesian PCE as a Control Variate Method for Estimating Sobol' Sensitivity Indices

Hui (Alyssa) Duan

Florida State University

March 16, 2022

March 16, 2022

1/34

- Provides a rigorous assessment of parameter sensitivity
- Variance-based method: Sobol' sensitivity index
- Application on applied math models and physical experiments

March 16, 2022

ANOVA decomposition

Consider a *d*-dimensional vector $\mathbf{x} = (x_1, \dots, x_d)$, the ANOVA decomposition of function $f(\mathbf{x})$ is given by

$$f(\mathbf{x}) = \sum_{u \subseteq \mathcal{D}} f_u(\mathbf{x}^u)$$

• The expectation of *f* :

$$E[f(\mathbf{x})] = \int f(\mathbf{x}) d\mathbf{x} = \mu$$

• The variance of *f* :

$$\sigma^2 = \int f^2(\mathbf{x}) d\mathbf{x} - \mu^2$$

• The variance of f_u :

$$\sigma_u^2 = \int f_u^2(\mathbf{x}) d\mathbf{x} - (\int f_u(\mathbf{x}) d\mathbf{x})^2 = \int f_u^2(\mathbf{x}) d\mathbf{x}$$

if $u \neq \emptyset$

Sobol' sensitivity index

• Lower Sobol' sensitivity index:

$$\underline{S}_{u} = \frac{1}{\sigma^{2}} \sum_{v \subseteq u} \sigma_{v}^{2} = \frac{\underline{\tau}_{u}}{\sigma^{2}}$$

• Upper Sobol' sensitivity index:

$$\overline{S}_{u} = \frac{1}{\sigma^{2}} \sum_{v \bigcap u \neq \emptyset} \sigma_{v}^{2} = \frac{\overline{\tau}_{u}}{\sigma^{2}}$$

Theorem (Sobol' [1])

$$\underline{\tau}_{u} = \int f(\mathbf{x}^{u}, \mathbf{x}^{-u}) f(\mathbf{x}^{u}, \mathbf{z}^{-u}) d\mathbf{x} d\mathbf{z}^{-u} - \mu^{2}$$
$$\overline{\tau}_{u} = \frac{1}{2} \int [f(\mathbf{x}^{u}, \mathbf{x}^{-u}) - f(\mathbf{z}^{u}, \mathbf{x}^{-u})]^{2} d\mathbf{x} d\mathbf{z}^{u}$$

Lower Sobol' estimator - MC approach

Owen's estimator

$$\underline{S}_{u}^{\text{owen}} = \frac{\underline{\tau}_{u}^{\text{owen}}(\mathbf{x}, \mathbf{y}^{u}, \mathbf{z})}{\text{Var}(f(\mathbf{x}))} = \frac{\frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_{i}) - f(\mathbf{y}_{i}^{u}, \mathbf{x}_{i}^{-u}))(f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u}) - f(\mathbf{z}_{i}))}{\text{Var}(f(\mathbf{x}))}$$
(1)

Janon/Monod's estimator

$$\underline{S}_{u}^{\text{janon}} = \frac{\frac{1}{N} \sum_{n=1}^{N} f(\mathbf{x}_{i}) f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u}) - f_{0}^{2}}{\frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x}_{i})^{2} + f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u})^{2}}{2} - f_{0}^{2}}$$
(2)
where $f_{0} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x}_{i}) + f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u})}{2}$

Azzini & Rosati's estimator

$$\underline{S}_{u}^{\mathsf{az}} = \frac{2\sum_{i=1}^{N} (f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u}) - f(\mathbf{z}_{i}))(f(\mathbf{x}_{i}) - f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u}))}{\sum_{i=1}^{N} (f(\mathbf{x}_{i}) - f(\mathbf{z}_{i})))^{2} + (f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u}) - f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u}))^{2}}$$
(3)

<u>Mar</u>ch 16, 2022

5/34

Upper Sobol' estimator - MC approach

Jansen's estimator

$$\overline{S}_{u}^{\text{jansen}} = \frac{\overline{\tau}_{u}^{\text{jansen}}(\mathbf{x}, \mathbf{z}^{u})}{\text{Var}(f(\mathbf{x}))} = \frac{\frac{1}{2n} \sum_{i=1}^{n} (f(\mathbf{x}_{i}) - f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u}))^{2}}{\text{Var}(f(\mathbf{x}))}$$
(4)

Janon/Monod's estimator

$$\overline{S}_{u}^{\text{janon}} = 1 - \frac{\frac{1}{N} \sum_{n=1}^{N} f(\mathbf{x}_{i}) f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u}) - f_{0}^{\prime 2}}{\frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x}_{i})^{2} + f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u})^{2}}{2} - f_{0}^{\prime 2}}$$
(5)
where $f_{0}^{\prime} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(\mathbf{x}_{i}) + f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u})}{2}$

Azzini & Rosati's estimator

$$\overline{S}_{u}^{\mathsf{az}} = \frac{\sum_{i=1}^{N} [f(\mathbf{z}_{i}) - f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u})]^{2} + [f(\mathbf{x}_{i}) - f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u})]^{2}}{\sum_{i=1}^{N} [f(\mathbf{x}_{i}) - f(\mathbf{z}_{i})]^{2} + [f(\mathbf{x}_{i}^{u}, \mathbf{z}_{i}^{-u}) - f(\mathbf{z}_{i}^{u}, \mathbf{x}_{i}^{-u})]^{2}}$$
(6)

March 16, 2022

6/34

Polynomial chaos expansion

Consider a *d*-dimensional vector $\mathbf{x} = (x_1, x_2, \dots, x_d)$ with probability density function $f_{\mathbf{x}}(x)$. Assume that the random output $Y = f(\mathbf{x})$ has finite variance, it can be written as the polynomial chaos expansion (PCE):

$$Y = f(\mathbf{x}) = \sum_{i=0}^{\infty} k_i \Psi_i(\mathbf{x})$$

• The truncated polynomial at order p is:

$$f_{p}(\mathbf{x}) = \sum_{i=0}^{P-1} k_{i} \Psi_{i}(\mathbf{x})$$

where $P = {p+d \choose p}$ • The expectation of f_p : $\mathbb{E}[f_p] = k_0$ • The variance of f_p : $\sigma^2 = \sum_{i=1}^{P-1} k_i^2$

<u>Mar</u>ch 16, 2022

Estimating Sobol' sensitivity indices using PCE

• ANOVA component *f*_{*u*}:

$$f_u(\mathbf{x}_u) = \sum_{i \in \mathcal{A}_u} k_i \Psi_{lpha^i}$$

 $A_u = \{i : \alpha_j^i > 0 \text{ for every } j \in u, \text{ and } \alpha_j^i = 0 \text{ otherwise} \}$ • Variance of the component function:

$$\sigma_u^2 = \sum_{i \in \mathcal{A}_u} k_i^2$$

• The lower Sobol' index:

$$\underline{S}_{u}^{\mathsf{pce}} \approx \frac{\sum_{i \in \underline{A}_{u,p}} \hat{k}_{i}^{2}}{\sigma^{2}}$$
(7)

 $\underline{A}_{u,p} = \{i : i < P, \text{and } \exists j \in u \text{ where } \alpha_j^i > 0 \ \alpha_j^i = 0 \text{ or every } j \in -u \}$ • The upper Sobol' index:

$$\overline{S}_{u}^{\text{pce}} \approx \frac{\sum_{i \in \overline{\mathcal{A}}_{u,p}} \hat{k}_{i}^{2}}{\sigma^{2}}$$
(8)

 $\overline{\mathcal{A}}_{u,p} = \{i : i < P, \text{and } \exists j \in u \text{ where } \alpha_j^i > 0 \}$

Polynomial Chaos Expansion

PCE coefficients:

$$k_i = \int_{S} \Psi_i(\mathbf{x}) f(\mathbf{x}) w(\mathbf{x}) d\mathbf{x}$$

Monte Carlo method:

$$\hat{k}_i = \frac{1}{N} \sum_{n=1}^{N} f(\mathbf{x}_n) \Psi_i(\mathbf{x}_n)$$

• Ordinary least-square minimization:

$$\hat{k} = \operatorname{argmin}_{k} ||\Psi(x)k - Y||_{2}$$

March 16, 2022

- Sparse PCE: an expansion for most coefficients are zero
- Sparse solver: Bayesian PCE

Problem Setup: a model to surrogate $Y = f(\mathbf{x})$

- Test functions: Ishigami function, Morris function
- Input x: Sobol' sequence
- Goal: estimate $\int f(\mathbf{x}) d\mathbf{x}$
- Compare function estimations between PCE and Bayesian PCE using

$$f_{p}(\mathbf{x}) = \sum_{i=0}^{P-1} k_{i} \Psi(\mathbf{x}_{i})$$

Error estimation:

$$\epsilon = \frac{\mathbb{E}[f(\mathbf{x}) - f_{p}(\mathbf{x})]^{2}}{Var[f(\mathbf{x})]}$$

March 16, 2022

• Ishigami function (dim = 3, p = 6)

$$f(\mathbf{x}) = \sin(x_1) + a\sin^2(x_2) + bx_3^4\sin(x_1)$$

- 2

11/34

A B M A B M March 16, 2022

where
$$\mathbf{x} = (x_1, x_2, x_3) \sim U[-\pi, \pi]^3$$
 and $a = 7$, $b = 0.1$

PCE v.s. Bayesian PCE

• Morris function (dim = 20, p = 3)

$$Y = \beta_0 + \sum_{i=1}^{20} \beta_i X_i + \sum_{i< j}^{20} \beta_{ij} X_i X_j + \sum_{i< j< k}^{20} \beta_{ijk} X_i X_j X_k + \sum_{i< j< k< l}^{20} \beta_{ijkl} X_i X_j X_k X_l$$

where

$$X_j = \begin{cases} 2(1.1x_i/(x_i + 0.1) - 0.5) & \text{if } i = 3, 5, 7\\ 2(x_i - 0.5) & \text{otherwise} \end{cases}$$

 $x_i \sim U[0,1]^{20}$. The coefficients β_i are assigned as follows:

$$\begin{cases} \beta_i = 20 & \text{for } i = 2, \cdots, 10 \\ \beta_{ij} = -15 & \text{for } i, j = 1, \cdots, 6 \\ \beta_{ijk} = -10 & \text{for } i, j, k = 1, \cdots, 5 \\ \beta_{ijkl} = 5 & \text{for } i, j, k, l = 1, \cdots, 4 \end{cases}$$

The remaining coefficients are defined by $\beta_0 = 0$, $\beta_i = (-1)^i$ and $\beta_{ij} = (-1)^{i+j}$

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → � � � �

PCE v.s. Bayesian PCE

Figure 1: Relative error of PCE and Bayesian PCE using Sobol' sequence (left: Ishigami function, right: Morris function)

March 16, 2022

Control variate method

Let $Y = f(\mathbf{x})$ be an estimator for θ , i.e. $\theta = \mathbb{E}[Y]$. The unbiased control variate estimator is given by

$$Y(\beta) = Y - \beta(C - \mathbb{E}[C])$$

where C is a random variable called a control variate for the estimator Y with known mean μ_C and correlated with Y. β is some real number and it is picked by minimizing the variance of $Y(\beta)$

$$\beta^* = rac{\mathsf{Cov}(Y,C)}{\mathsf{Var}(C)}$$

The control variate estimator is given by

$$\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} Y_i - \hat{\beta}_N^*(C_i - \mathbb{E}[C])$$

March 16, 2022

The control variate estimator with truncated PCE as a control is given by

$$\hat{f}_{cv} = \frac{1}{N} \sum_{i=1}^{N} f(\mathbf{x}_i) - \beta(f_p(\mathbf{x}_i) - \mathbb{E}[f_p])$$
(9)

March 16, 2022

15/34

where f_p is estimated using Bayesian PCE and optimal coefficient β is estimated by

$$\beta^* = \frac{\mathsf{Cov}(f(\mathbf{x}), f_p(\mathbf{x}))}{\mathsf{Var}(f_p(\mathbf{x}))}$$

The lower Sobol' index:

$$\underline{S}_{u}^{cv1} = \frac{\underline{\tau}_{u}^{cv1}(\mathbf{x}, \mathbf{y}^{u}, \mathbf{z})}{\operatorname{Var}(f(\mathbf{x}))}$$
(10)

where

$$\underline{\tau}_{u}^{cv1}(\mathbf{x},\mathbf{y}^{u},\mathbf{z}) = \underline{\tau}_{u}^{\mathsf{owen}}(\mathbf{x},\mathbf{y}^{u},\mathbf{z}) - \underline{\beta}^{*}(\underline{\tau}_{u,p}^{\mathsf{owen}}(\mathbf{x},\mathbf{y}^{u},\mathbf{z}) - \mathbb{E}[\underline{\tau}_{u,p}^{\mathsf{owen}}])$$

The upper Sobol' index:

$$\overline{S}_{u}^{cv1} = \frac{\overline{\tau}_{u}^{cv1}(\mathbf{x}, \mathbf{z}^{u})}{\operatorname{Var}(f(\mathbf{x}))}$$
(11)

3 D (3 D)

March 16, 2022

3

$$\overline{ au}_{u}^{cv1}(\mathsf{x},\mathsf{z}^{u}) = \overline{ au}_{u}^{\mathsf{jansen}}(\mathsf{x},\mathsf{z}^{u}) - \overline{eta}^{*}(\overline{ au}_{u,p}^{\mathsf{jansen}}(\mathsf{x},\mathsf{z}^{u}) - \mathbb{E}[\overline{ au}_{u,p}^{\mathsf{jansen}}])$$

Control variate method 2 (cv2)

The lower Sobol' index:

$$\underline{S}_{u}^{cv2} = \frac{\underline{\mathcal{I}}_{u,p}^{cv2}(\mathbf{x}, \mathbf{y}^{u}, \mathbf{z})}{\operatorname{Var}(f(\mathbf{x}))}$$
(12)

where

$$\begin{aligned} \underline{\tau}_{u,p}^{cv2}(\mathbf{x},\mathbf{y}^{u},\mathbf{z}) &= (f(\mathbf{x}) - \hat{f}_{p}(\mathbf{x}) - f(\mathbf{y}^{u},\mathbf{x}^{-u}) + \hat{f}_{p}(\mathbf{y}^{u},\mathbf{x}^{-u}))\\ (f(\mathbf{x}^{u},\mathbf{z}^{-u}) - \hat{f}_{p}(\mathbf{x}^{u},\mathbf{z}^{-u}) - f(\mathbf{z}) + \hat{f}_{p}(\mathbf{z})) + \mathbb{E}[\underline{\tau}_{u,p}] \end{aligned}$$

The upper Sobol' index:

$$\overline{S}_{u}^{cv2} = \frac{\overline{\tau}_{u,p}^{cv2}(\mathbf{x}, \mathbf{z}^{u})}{\operatorname{Var}(f(\mathbf{x}))}$$
(13)

March 16, 2022

where

$$\overline{\tau}_{u,p}^{cv2}(\mathbf{x},\mathbf{z}^{u}) = \frac{1}{2}(f(\mathbf{x}) - \hat{f}_{p}(\mathbf{x}) - f(\mathbf{z}^{u},\mathbf{x}^{-u}) + \hat{f}_{p}(\mathbf{z}^{u},\mathbf{x}^{-u}))^{2} + \mathbb{E}[\overline{\tau}_{u,p}]$$

Numerical results

- Problem: estimate the Sobol' sensitivity index
- Estimators: cv1, cv2, MC estimators, PCE
- Input: N = 10,000 pseudorandom numbers generated by Mersenne Twister
- Repeat the process K = 50 times independently to obtain the root mean square error(RMSE)

$$\mathsf{RMSE}_{j} = [\frac{1}{K} \sum_{k=1}^{K} (\hat{S}_{j}^{(k)} - S_{j})^{2}]^{1/2}$$

• Compute sample standard deviation σ of the estimates with 50 independent estimates and record the computing time t to compare the efficiency:

$$E = \sigma^2 \times t$$

March 16, 2022

The problem is inexpensive to evaluate and the "low" truncation can not approximate the problem accurately

March 16, 2022

Ishigami function (dim = 3, p = 2)

Figure 2: Efficiency comparison for Ishigami function

March 16, 2022

20/34

The problem is inexpensive to evaluate and the "low" truncation can approximate the problem accurately

March 16, 2022

Morris function (dim = 20, p = 2)

The problem is expensive to evaluate but the "low" truncation can not approximate the function well

March 16, 2022

SIR model (dim = 4, p = 2)

• SIR model:

$$\begin{aligned} \frac{dS}{dt} &= \delta N - \delta S - \gamma k I S , \ S(0) = S_0 \\ \frac{dI}{dt} &= \gamma k I S - (r + \gamma) I , \ I(0) = I_0 \\ \frac{dR}{dt} &= r I - \gamma R , \ R(0) = R_0 \end{aligned}$$

Consider the scalar response:

$$Y=\int_0^1 R(t,\theta)dt$$

where $S_0 = 900$, $I_0 = 100$, $R_0 = 0$ and input parameters $\theta = [\gamma, k, r, \delta] \sim U[0, 1]^4$. We use 3,300,000 model evaluations to estimate the exact values for both lower Sobol' and upper Sobol' indices

B ► < E ► < E ► E</p>
March 16, 2022

SIR model (dim = 4, p = 2)

Hui (Alyssa) Duan (FSU)

• Stiefel canonical distance model:

Denote the Stiefel manifold, the set of k ordered orthonormal vectors in \mathbb{R}^n with

$$\mathbf{St}_{n,k} = \{ U \in \mathbb{R}^{n \times k} : U^T U = I_k \}$$

with n = 5, k = 2

- Goal: The expectation of distance from an area to a point
- Input: $\mathbf{x} \sim U[-1,1]^7$
- Use 4,950,000 model evaluations to estimate the exact values for both lower Sobol' and upper Sobol' indices

B ► < E ► < E ► </p>
March 16, 2022

Stiefel canonical distance model (dim = 7, p = 2)

Figure 5: Efficiency comparison for Stiefel canonical distance model

March 16, 2<u>022</u>

- Estimators: cv1 and PCE
- Models: SIR model, Stiefel canonical distance model

March 16, 2022

28 / 34

• Comparison: RMSE and efficiency

р	<i>S</i> ₁	<i>S</i> ₂	S_3	<i>S</i> ₄
6	0.0033528	0.0022629	0.01265	0.0016435
7	0.0023681	0.0015596	0.0093005	0.0014156
cv1	0.0025475	0.0034642	0.0094597	0.0010009

Table 1: RMSE comparison of PCE with cv1 for SIR model, lower Sobol'

р	<i>S</i> ₁	S_1 S_2		<i>S</i> ₄	
7	1.2310e-04	5.3400e-05	1.8993e-03	4.4000e-05	
cv1	6.6220e-06	1.2245e-05	9.1312e-05	1.0220e-06	

Table 2: Efficiency comparison of PCE with cv1 for SIR model, lower Sobol'

March 16, 2022

р	S_1 S_2		<i>S</i> ₃	<i>S</i> ₄	
9	0.0047618	0.0045820	0.0026967	0.00074129	
10	0.0039348	0.0037069	0.0019462	0.00058521	
cv1	0.0027806	0.0030625	0.0095914	0.0007628	

Table 3: RMSE comparison of PCE with cv1 for SIR model, upper Sobol'

р	<i>S</i> ₁	S_1 S_2		<i>S</i> ₄	
10	9.2195e-03	8.1822e-03	2.2554e-03	2.0390e-04	
cv1	7.8900e-06	9.5700e-06	9.3872e-05	5.9400e-07	

Table 4: Efficiency comparison of PCE with cv1 for SIR model, upper Sobol'

March 16, 2022

р	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	S_5	S_6	<i>S</i> ₇
4	0.0044	0.0041	0.0017	0.0041	0.0024	0.0009	0.0015
5	0.0028	0.0025	0.0013	0.0025	0.0016	0.0007	0.0011
cv1	0.0037	0.0053	0.003	0.0039	0.0024	0.0016	0.0019

Table 5: RMSE comparison of PCE with cv1 for distance model, lower Sobol'

р	S_1	<i>S</i> ₂	S_3	<i>S</i> ₄	S_5	S_6	<i>S</i> ₇
5	0.0020	0.0016	0.0004	0.0016	0.0006	0.0001	0.0003
cv1	0.0010	0.0019	0.0006	0.0010	0.0004	0.0002	0.0003

Table 6: Efficiency comparison of PCE with cv1 for distance model, lower Sobol'

March 16, 2022

р	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	S_5	S_6	<i>S</i> ₇
6	0.0084	0.0095	0.01	0.0103	0.0094	0.0073	0.0093
7	0.0063	0.0073	0.0073	0.0077	0.0069	0.0062	0.0071
cv1	0.0030	0.0044	0.0028	0.0036	0.0028	0.0015	0.0024

Table 7: RMSE comparison of PCE with cv1 for distance model, upper Sobol'

р	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	S4	S_5	S_6	S ₇
7	0.0722	0.0961	0.0968	0.1091	0.0877	0.0703	0.0908
cv1	0.0003	0.0005	0.0002	0.0003	0.0002	0	0.0001

Table 8: Efficiency comparison of PCE with cv1 for distance model, upper Sobol'

March 16, 2022

- Control variate estimator (cv1) has better performance for Sobol' sensitivity indices estimation when the problem becomes expensive and the "low" truncation order can not approximate the function well
- cv1 yields best efficiency among all MC estimators and beats the PCE around 2-3 magnitudes, especially for estimating upper Sobol' indices

March 16, 2022

Thank You

メロト メポト メヨト メヨト

March 16, 2022

2