

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

anno a

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

anna a

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

anna a

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

anno a

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

© AUDI AG

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

.....

Audi intelligence automated driving

CITY

Would you take a ride?

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Dynamic Sampling Strategy for Morris' Method of Elementary Effects

Franziska Henze (KIT), Markus Rußer (HS Kempten), Dennis Faßbender (Audi), Christoph Stiller (KIT), Stefan-Alexander Schneider (HS Kempten)

10th International Conference on Sensitivity Analysis of Model Output | Tallahassee, FL, United States

8 03-14-2022 Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

9 03-14-2022 Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

1003-14-2022Dynamic Sampling Strategy for Morris' Method of Elementary Effects
Franziska Henze, franziska.henze@kit.edu

1103-14-2022Dynamic Sampling Strategy for Morris' Method of Elementary Effects
Franziska Henze, franziska.henze@kit.edu

© AUDI AG

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

(666)

anno a

Audi intelligence automated driving

CITY

© AUDI AG

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

.....

(111)

Audi intelligence automated driving

CITY

include relevant information only

(333)

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

include relevant information only \rightarrow Which information is relevant?

© AUDI AG

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

(666)

CITY

Audi intelligence

automated driving

Karlsruhe Institute of Technology (KIT)

include relevant information only \rightarrow Which information is relevant? \rightarrow Morris' method of elementary effects!

© AUDI AG

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Dynamic Sampling Strategy for Morris' Method of Elementary Effects

((()))

Audi intelligence

automated driving

CITY

03-14-2022

Content

1. Morris' Method of Elementary Effects

2.Sampling Strategy: Dynamic Stop Criterion

3.Results

int getRandomNumber()

3

adapted from https://xkcd.com/221/

elementary effects (for all inputs $i \in \{1, ..., k\}, k \in \mathbb{N}$), offset $\Delta_i \in \mathbb{R}$ $d_i(x) \coloneqq \frac{f(x + \Delta_i e_i) - f(x)}{\Delta_i}$

elementary effects (for all inputs $i \in \{1, ..., k\}, k \in \mathbb{N}$), offset $\Delta_i \in \mathbb{R}$ $d_i(x) \coloneqq \frac{f(x + \Delta_i e_i) - f(x)}{\Delta_i} \checkmark \text{deterministic } f, x$

elementary effects (for all inputs $i \in \{1, ..., k\}, k \in \mathbb{N}$), offset $\Delta_i \in \mathbb{R}$ $d_i(x) \coloneqq \frac{f(x + \Delta_i e_i) - f(x)}{\Delta_i} \checkmark \text{deterministic } f, x$ stochastic x?

assume $k = 1, x \in \mathbb{R}$ to be stochastic

• calculate elementary effects $d_1(x_j)$ for M = 4 samples $\{x_j\}_{j=1}^4$

reminder:

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

assume $k = 1, x \in \mathbb{R}$ to be stochastic

 $d_1(x_1)$

 $x_1 = x_1 + \Delta_1$

• calculate elementary effects $d_1(x_j)$ for M = 4 samples $\{x_j\}_{j=1}^4$

reminder:

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

assume $k = 1, x \in \mathbb{R}$ to be stochastic

• calculate elementary effects $d_1(x_j)$ for M = 4 samples $\{x_j\}_{j=1}^4$

$$d_i(x_j) = \frac{f(x_j + \Delta_i e_i) - f(x_j)}{\Delta_i}$$

• assume $k = 1, x \in \mathbb{R}$ to be stochastic

• calculate elementary effects $d_1(x_j)$ for M = 4 samples $\{x_j\}_{j=1}^4$

$$d_i(x_j) = \frac{f(x_j + \Delta_i e_i) - f(x_j)}{\Delta_i}$$

• assume $k = 1, x \in \mathbb{R}$ to be stochastic

• calculate elementary effects $d_1(x_j)$ for M = 4 samples $\{x_j\}_{j=1}^4$

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

• assume $k = 1, x \in \mathbb{R}$ to be stochastic

• calculate elementary effects $d_1(x_j)$ for M = 4 samples $\{x_j\}_{j=1}^4$

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

$$\boldsymbol{\mu}_{i,M}^* \coloneqq \sum_{j=1}^M \frac{\left|\boldsymbol{d}_i(\boldsymbol{x}_j)\right|}{M} \qquad \qquad \text{reminder:} \\ \boldsymbol{d}_i(\boldsymbol{x}_j) = \frac{f(\boldsymbol{x}_j + \Delta_i \boldsymbol{e}_i) - f(\boldsymbol{x}_j)}{\Delta_i}$$

• for a set $\{x_j\}_{j=1}^M$ of $M \in \mathbb{N}$ samples and for all inputs $i \in \{1, ..., k\}$

$$\boldsymbol{\mu}_{i,M}^* \coloneqq \sum_{j=1}^M \frac{\left|\boldsymbol{d}_i(\boldsymbol{x}_j)\right|}{M}$$

 $\|\boldsymbol{\mu}_{i,M}^*\|$ large?

$$f(x_j) \longrightarrow f(x_j + \Delta_1 e_1)$$

reminder:

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

$$\boldsymbol{\mu}_{i,M}^{*} = \sum_{j=1}^{M} \frac{|\boldsymbol{d}_{i}(\boldsymbol{x}_{j})|}{M}$$

$$f(x_j + \Delta_2 e_2)$$

$$f(x_j) \longrightarrow f(x_j + \Delta_1 e_1)$$

$$f(x_j + \Delta_2 e_2)$$

$$f(x_j) = f(x_j + \Delta_1 e_1)$$

$$f(x_j + \Delta_3 e_3)$$

reminder:

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

$$\boldsymbol{\mu}_{i,M}^{*} = \sum_{j=1}^{M} \frac{|\boldsymbol{d}_{i}(\boldsymbol{x}_{j})|}{M}$$

• elementary effects for k = 3:

$$f(x_{j} + \Delta_{2}e_{2})$$

$$f(x_{j}) \rightarrow f(x_{j} + \Delta_{1}e_{1})$$

$$f(x_{j} + \Delta_{3}e_{3})$$
reminder:
$$d_{i}(x_{j}) = \frac{f(x_{j} + \Delta_{i}e_{i}) - f(x_{j})}{\Delta_{i}}$$

$$\mu_{i,M}^{*} = \sum_{j=1}^{M} \frac{|d_{i}(x_{j})|}{M}$$

• 4 = k + 1 function evaluations per elementary effect

• elementary effects for k = 3:

$$f(x_{j} + \Delta_{2}e_{2})$$

$$f(x_{j}) \rightarrow f(x_{j} + \Delta_{1}e_{1})$$

$$\mu_{i,M}^{*} = \sum_{j=1}^{M} \frac{|d_{i}(x_{j})|}{M}$$
reminder:
$$d_{i}(x_{j}) = \frac{f(x_{j} + \Delta_{i}e_{i}) - f(x_{j})}{\Delta_{i}}$$

$$\mu_{i,M}^{*} = \sum_{j=1}^{M} \frac{|d_{i}(x_{j})|}{M}$$

4 = k + 1 function evaluations per elementary effect
 for *M* samples: *M*(*k* + 1) function evaluations

 Δ_i

Number of samples

• elementary effects for k = 3:

$$f(x_{j} + \Delta_{2}e_{2})$$
reminder:
$$d_{i}(x_{j}) = \frac{f(x_{j} + \Delta_{i}e_{i}) - f(x_{j})}{\Delta_{i}}$$

$$f(x_{j} + \Delta_{3}e_{3})$$

$$\mu_{i,M}^{*} = \sum_{j=1}^{M} \frac{|d_{i}(x_{j})|}{M}$$

• 4 = k + 1 function evaluations per elementary effect • for M samples: M(k + 1) function evaluations → curse of dimensionality 😕

Content

1. Morris' Method of Elementary Effects

2. Sampling Strategy: Dynamic Stop Criterion

3.Results

adapted from https://xkcd.com/221/

example: automated driving

many inputs

many inputs

 \rightarrow curse of dimensionality \Rightarrow long runtime for *M* samples

many inputs

- \rightarrow curse of dimensionality \Rightarrow long runtime for *M* samples
- \rightarrow instead: choose number of samples M_i for each input *i* separately

$$\epsilon_{i,M_{i}}^{2} \coloneqq \frac{1}{10} \sum_{l=1}^{10} \frac{\left\| \boldsymbol{\mu}_{i,M_{i-l}}^{*} - \boldsymbol{\mu}_{i,M_{i}}^{*} \right\|^{2}}{\left\| \boldsymbol{\mu}_{i,M_{i}}^{*} \right\|^{2}}$$

reminder:

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

$$\boldsymbol{\mu}_{i,M}^{*} = \sum_{i=1}^{M} \frac{|\boldsymbol{d}_{i}(\boldsymbol{x}_{j})|}{M}$$

$$\epsilon_{i,M_{i}}^{2} \coloneqq \frac{1}{10} \sum_{l=1}^{10} \frac{\left\| \boldsymbol{\mu}_{i,M_{i-l}}^{*} - \boldsymbol{\mu}_{i,M_{i}}^{*} \right\|^{2}}{\left\| \boldsymbol{\mu}_{i,M_{i}}^{*} \right\|^{2}} \\ \epsilon_{i,M_{i}}^{2} < \kappa_{act}$$

reminder:

$$\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Delta_{i}}$$

$$\boldsymbol{\mu}_{i,M}^{*} = \sum_{j=1}^{M} \frac{|\boldsymbol{d}_{i}(\boldsymbol{x}_{j})|}{M}$$

Why is the dynamic stop criterion necessary?

Morris' method

Why is the dynamic stop criterion necessary?

Morris' method

- qualitative method

Why is the dynamic stop criterion necessary?

Morris' method

- → qualitative method
- → no exact calculation of input's influence

BUT: this is necessary for some inputs <a>C

61 03-14-2022 Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska,henze@kit.edu

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Why is the dynamic stop criterion necessary?

Morris' method

- → qualitative method
- → no exact calculation of input's influence

62

Dynamic Sampling Strategy for Morris' Method of Elementary Effects 03-14-2022 Franziska Henze, franziska, henze@kit.edu

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Why is the dynamic stop criterion necessary?

Morris' method

- qualitative method
- → no exact calculation of input's influence
- BUT: this is necessary for some inputs (3)

example automated driving: if $\|\boldsymbol{\mu}_{\boldsymbol{\nu},M_{\boldsymbol{\nu}}}^*\| > \epsilon$ and $v < v_{\text{limit}}$: accelerate

63 03-14-2022 Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska,henze@kit.edu

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Why is the dynamic stop criterion necessary?

Morris' method

- → qualitative method
- → no exact calculation of input's influence
- BUT: this is necessary for some inputs (3)
- However, this is important to decide if the automated vehicle broke a traffic rule

example automated driving: if $\|\boldsymbol{\mu}_{v,M_v}^*\| > \epsilon$ and $v < v_{\text{limit}}$: accelerate

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

example

Why is the dynamic stop criterion necessary?

Morris' method

- → qualitative method
- BUT: this is necessary for some inputs (3)
- However, this is important to decide if the automated vehicle broke a traffic rule
 - the dynamic stop criterion increases runtime only if necessary

automated driving:

if $\|\boldsymbol{\mu}_{\boldsymbol{v},M_n}^*\| > \epsilon$ and

accelerate

 $v < v_{\text{limit}}$:

Content

1. Morris' Method of Elementary Effects

2. Sampling Strategy: Dynamic Stop Criterion

3.Results

adapted from https://xkcd.com/221/

Results: *g***-Function** (as in Campolongo *et al.*, 1997)

,

reminder:

$$d_{i}(x_{j}) = \frac{f(x_{j} + \Delta_{i}e_{i}) - f(x_{j})}{\Delta_{i}}$$
$$\mu_{i,M_{i}}^{*} = \sum_{j=1}^{M_{i}} \frac{|d_{i}(x_{j})|}{M_{i}}$$
$$\epsilon_{i,M_{i}}^{2} = \frac{1}{10} \sum_{l=1}^{10} \frac{\|\mu_{i,M_{i-l}}^{*} - \mu_{i,M_{i}}^{*}\|^{2}}{\|\mu_{i,M_{i}}^{*}\|^{2}}$$
$$\frac{1}{k} \sum_{l=1}^{\infty} \epsilon_{i,M_{i}}^{2} < \kappa_{stop}$$

$$g: [0,1]^6 \to \mathbb{R},$$
$$\mathbf{x} \mapsto g(\mathbf{x}) \coloneqq \prod_{i=1}^6 g_i(x_i)$$
$$= \prod_{i=1}^6 \frac{|4x_i - 2| + a_i}{1 + a_i}$$

 $\boldsymbol{x} \sim \mathcal{U}([0,1]^6)$

Results: *g***-Function** (as in Campolongo *et al.*, 1997)

$$g: [0,1]^6 \to \mathbb{R},$$

$$\mathbf{x} \mapsto g(\mathbf{x}) \coloneqq \prod_{i=1}^6 g_i(x_i)$$

$$= \prod_{i=1}^6 \frac{|4x_i - 2| + a_i}{1 + a_i},$$

 $\boldsymbol{x} \sim \mathcal{U}([0,1]^6)$

$$\mu_{i,M_{i}}^{*} = \sum_{j=1}^{k} \frac{|a_{i}(x_{j})|}{M_{i}}$$

$$\epsilon_{i,M_{i}}^{2} = \frac{1}{10} \sum_{l=1}^{10} \frac{\|\mu_{i,M_{l-l}}^{*} - \mu_{i,M_{i}}^{*}\|^{2}}{\|\mu_{i,M_{i}}^{*}\|^{2}}$$

$$\frac{1}{k} \sum_{l=1}^{k} \epsilon_{i,M_{i}}^{2} < \kappa_{stop}$$

•
$$a_1 = 0$$
,
• $a_2 = 0.2$,
• $a_3 = 0.9$,
• $a_4 = 9$,
• $a_5 = 50$,
• $a_6 = 99$ irrelevant

reminder:

Results: *g***-Function** (as in Campolongo *et al.*, 1997)

 $g: [0,1]^6 \rightarrow \mathbb{R},$

$$\begin{aligned} \boldsymbol{x} \mapsto \boldsymbol{g}(\boldsymbol{x}) &\coloneqq \prod_{i=1}^{6} g_i(\boldsymbol{x}_i) \\ &= \prod_{i=1}^{6} \frac{|4\boldsymbol{x}_i - 2| + a_i}{1 + a_i}, \\ \boldsymbol{x} \sim \mathcal{U}([0, 1]^6) \end{aligned}$$

 $\boldsymbol{d}_i(\boldsymbol{x}_j) = \frac{f(\boldsymbol{x}_j + \Delta_i \boldsymbol{e}_i) - f(\boldsymbol{x}_j)}{i}$ (0) $\boldsymbol{\mu}_{i,M_i}^* = \sum_{j=1}^{M_i} \frac{\left|\boldsymbol{d}_i(\boldsymbol{x}_j)\right|}{M_i}$ 3 $\epsilon_{i,M_i}^2 = \frac{1}{10} \sum_{l=1}^{10} \frac{\|\boldsymbol{\mu}_{i,M_{l-l}}^* - \boldsymbol{\mu}_{i,M_i}^*\|}{\|\boldsymbol{\mu}_{i,M_{l-l}}^* - \boldsymbol{\mu}_{i,M_i}^*\|}$ SA measure μ_{i,M_i}^* ($i \in$ 2 $\frac{1}{k}\sum \epsilon_{i,M_i}^2 < \kappa_{stop}$ a₁ = 0,
a₂ = 0.2, relevant • $a_3 = 0.9$, • *a*₄ = 9, 0 $10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3}$ 10^{-2} • $a_5 = 50$, , irrelevant global bound $\kappa_{\rm stop}$ • $a_6 = 99$

A closer look at the number of samples

A closer look at the number of samples

(10 ³	$\kappa_{ m stop}$	number of samples M_i for inputs $i = \{1,, 6\}$					
sample size M_i $(i \in \{1, \ldots, 6\}$	$10^2 \qquad \bigcirc \qquad $		$a_1 = 0$	$a_2 = 0.2$	$a_3 = 0.9$	a ₄ = 9	a ₅ = 50	$a_6 = 99$
		10 ⁻¹	10	10	10	10	10	10
		10^{-2}	12	14	14	14	14	14
		10^{-3}	43	44	44	44	44	44
		10^{-4}	59	76	96	96	96	50
		10^{-5}	189	210	205	210	210	210
		10^{-6}	563	726	681	616	700	726
•1								
	$10^{-6} \ 10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1}$		relevant				irrelevant	
	global bound κ_{stop}							

A closer look at the number of samples

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu
A closer look at the number of samples

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

What did we talk about today?

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

((()))

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

What did we talk about today? Morris' Method

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

((()))

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

What did we talk about today?
Morris' Method
sampling-based

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

((()))

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

What did we talk about today?
Morris' Method
sampling-based
dynamic stop criterion

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

((())

Audi intelligence automated driving

CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

What did we talk about today?
Morris' Method
sampling-based
dynamic stop criterion
reduce runtime

03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

((()))

Audi intelligence

@CITY

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)

Appendix

www.kit.edu

Algorithm 1.1 Dynamic Stop Criterion

Require: minimum sample size M_{\min} , component-wise and global constants κ_{act} , κ_{stop} **Ensure:** relative residuum $\epsilon_M^2 \leq \kappa_{\text{stop}}$ reminder: calculate elementary effects for samples $\{x_i\}_{i=1}^{M_{\min}}, M \leftarrow M_{\min}$ $\boldsymbol{d}_{i}(\boldsymbol{x}_{j}) = \frac{\boldsymbol{f}(\boldsymbol{x}_{j} + \Delta_{i}\boldsymbol{e}_{i}) - \boldsymbol{f}(\boldsymbol{x}_{j})}{\Lambda_{i}}$ calculate sample means $\mu_{i,M_{min}}^*$ for all inputs $i \in \{1,\ldots,k\}$ calculate residua e_{iM}^2 , e_M^2 for all $i \in \{1, \dots, k\}$ $\boldsymbol{\mu}_{i,M_i}^* = \sum_{i=1}^{M_i} \frac{\left|\boldsymbol{d}_i(\boldsymbol{x}_i)\right|}{M_i}$ $\mathscr{A} \leftarrow \{i | i \in \{1, \dots, k\} \land \epsilon_{iM}^2 > \kappa_{act}\}$ $M_i \leftarrow M_{\min}$ for all $i \in \{1, \ldots, k\} \setminus \mathscr{A}$ $\epsilon_{i,M_{i}}^{2} = \frac{1}{10} \sum_{l=1}^{10} \frac{\left\| \boldsymbol{\mu}_{i,M_{i-l}}^{*} - \boldsymbol{\mu}_{i,M_{i}}^{*} \right\|^{2}}{\left\| \boldsymbol{\mu}_{i,M_{i}}^{*} \right\|^{2}}$ while $\epsilon_M^2 > \kappa_{\text{stop}}$ do get new admissible sample x_{M+1} for $i \in \mathcal{A}$ do $\frac{1}{k}\sum_{i}\epsilon_{i,M_{i}}^{2} < \kappa_{stop}$ calculate additional elementary effect d_i for sample x_{M+1} update sample mean μ_{iM+1}^* and residua ϵ_{iM+1}^2 , ϵ_M^2 if $\epsilon_{iM+1}^2 \leq \kappa_{act}$ then $\mathcal{A} \leftarrow \mathcal{A} \setminus \{i\}$ $M_i \leftarrow M + 1$ end if end for $M \leftarrow M + 1$ end while

On the minimum sample number M_{\min} and the constants κ_{act} , κ_{stop}

reminder:

- minimum number of samples M_{min}
 - is influence detected?
 - if too small, influential inputs are easily overseen
 - for Central Limit Theorem: $M_{\min} \ge 30$
- global stopping constant κ_{stop}
 - **stabilizes characteristic quantities** μ^* , μ , σ
 - the smaller κ_{stop} , the smaller is the change of the quantities over the last 10 iterations
- **Component-wise constant** κ_{act}
 - the smaller it is, the more "unnecessary" samples are evaluated

Relation between minimum number of samples M_{min} and μ^*

81 03-14-2022

Dynamic Sampling Strategy for Morris' Method of Elementary Effects Franziska Henze, franziska.henze@kit.edu

Institute of Measurement and Control Systems (MRT) Karlsruhe Institute of Technology (KIT)