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Motivation: Sensitivity analysis of parameters, or their combinations regardless 
of their space orientation 

Active subspaces

Link between Active subspaces, Derivative based global sensitivity measures
(DGSM) and Sobol’ sensitivity indices

Models with rotations and correlated variables

Outline
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Sensitivity analysis (SA) should be able to quantify uncertainty of parameters, or their 
combinations regardless of their space orientation for example for directions not aligned 
with the axes of the parameter space

Active subspaces (AS) identifies important directions in the parameter space which allows 
1) dimension reduction
2) to perform SA invariant of space rotations 
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Motivation
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Active Subspaces

𝑓 𝑥 ∈ С1, 𝑥 ∈ ℝ𝑛 , 𝑥~ 𝑝 𝑥 , 
𝜕𝑓 𝒙

𝜕𝑥𝑖
∈ 𝐿2, ∀𝑖 = 1,… , 𝑛

Compute matrix 𝐶 = 𝐸 𝛻𝑓𝛻𝑓𝑇 and its eigenvalue decomposition: 𝐶 = 𝑊𝛬𝑊𝑇, 

𝛬 = 𝑑𝑖𝑎𝑔 𝜆1, … 𝜆𝑛 , 𝜆1 ≥ ⋯ ≥ 𝜆𝑛 are eigenvalues, 

𝑊 - orthogonal matrix of eigenvectors forming the basis of ℝn. 

Find a partition 𝛬 =
𝛬1

𝛬2
, 𝑊 = [𝑊1 𝑊2],

𝑊1 - eigenvectors of the top 𝑘 eigenvalues (𝑘 ≪ 𝑛), 

Their span is called the “active subspace” (AS) .

𝑥 = 𝑊𝑊𝑇𝑥 = 𝑊1𝑊1
𝑇𝑥 +𝑊2𝑊2

𝑇𝑥 = 𝑊1𝑦 +𝑊2𝑧,

𝑓 𝑥 = 𝑓 𝑊1𝑦 +𝑊2𝑧 ≈ 𝑔 𝑦 , where 𝑦 = 𝑊1
𝑇𝑥 ,  𝑦 ∈ ℝ𝑘 - active variables, 

z ∈ ℝ𝑛−𝑘− inactive variables

Ref.: P.G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter 
Studies, SIAM, Philadelphia, 2015
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Derivative based global sensitivity measures (DGSM) and 
and their link with Active subspaces

𝑓 𝒙 ∈ 𝐶 𝐻𝑛 ,
𝜕𝑓 𝒙

𝜕𝑥𝑖
∈ 𝐿2 𝐻𝑛 , ∀𝑖 = 1,… , 𝑛

𝜈𝑖 = න
𝐻𝑛

𝜕𝑓(𝒙)

𝜕𝑥𝑖

2

𝑑 𝒙

𝑆𝑖
𝑡𝑜𝑡 ≤

𝑣𝑖

𝜋2𝐷

Link with Active subspaces

𝜈𝑖 = 𝐶𝑖𝑖

Ref.: Sobol’ I.M., Kucherenko S. A new derivative based importance criterion for groups of 
variables and its link with the global sensitivity index.  Comp. Physics Comm., 181, 1212-1217, 
2010)
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Consider model in transformed coordinates: 𝑥′ = ෠𝑅𝑥, 
rotation matrix ෠𝑅 is orthogonal. 

Consider the link between sensitivity measures of 𝑓 𝑥′ with respect 

to 𝑥′ coordinates and  𝑓𝑅 = 𝑓 ෠𝑅𝑥 with respect to 𝑥 coordinates. 

Example 1. Ishigami function 

𝑓 𝑥′ = 𝑠𝑖𝑛 𝑥′1 + 𝑎 𝑠𝑖𝑛2 𝑥′2 + 𝑏𝑥3
′4 𝑠𝑖𝑛 𝑥′1 , 𝑥

′
𝑖∈ −𝜋,−𝜋 , 𝑖=1, 2, 3

Example 2. Ishigami function with rotation on 𝜃

෡𝑹 =
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

.

𝑓𝑅 𝑥 = 𝑠𝑖𝑛( 𝑐𝑜𝑠( 𝜃)𝑥1 − 𝑠𝑖𝑛( 𝜃)𝑥2) + 𝑎 𝑠𝑖𝑛2( 𝑐𝑜𝑠( 𝜃)𝑥1 + 𝑠𝑖𝑛( 𝜃)𝑥2)

+𝑏𝑥3
4 𝑠𝑖𝑛( 𝑐𝑜𝑠( 𝜃)𝑥1 − 𝑠𝑖𝑛( 𝜃)𝑥2)

Active Subspaces for Problems with Rotations 
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Ishigami function

without rotation rotation on 𝜃 = π/4

𝑓 𝑥′1, 𝑥
′
2, 𝑥

′
3= 0.0 𝑓𝑅 𝑥1, 𝑥2, 𝑥3 = 0.0

Contour lines
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Link between DGSM for problems with rotations 

Note that  
𝜕𝑓𝑅

𝜕𝑥𝑖
= σ𝑗=1

𝑛 𝜕𝑓

𝜕𝑥𝑗
′

𝜕𝑥𝑗
′

𝜕𝑥𝑖
. 

𝜕𝑥𝑗
′

𝜕𝑥𝑖
= 𝑟𝑗𝑖 , 𝑟𝑗𝑖 - elements of ෠𝑅

𝜈𝑖
𝑅 = 𝐻𝑛׬ σ𝑗=1

𝑛 𝑟𝑗𝑖
𝜕𝑓

𝜕𝑥𝑗
′

2

𝑑𝑥 = σ𝑗=1
𝑛 𝑟𝑗𝑖𝜈𝑖 +σ𝑗=1

𝑛 σ𝑘≠𝑗,
𝑛 𝑟𝑗𝑖 𝑟𝑘𝑖 𝐻𝑛׬

𝜕𝑓

𝜕𝑥𝑗
′

𝜕𝑓

𝜕𝑥𝑘
′ 𝑑𝑥

Example. 𝑓 𝑥1
′ , 𝑥2

′ , 𝑥3
′ with corresponding 𝜈1, 𝜈2, 𝜈3 .

෠𝑅 =
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0
0 0 1

𝜈1
𝑅 = 𝑐𝑜𝑠( 𝜃)2𝜈1 + 𝑠𝑖𝑛( 𝜃)2𝜈2 + 𝑠𝑖𝑛( 𝜃) 𝑐𝑜𝑠( 𝜃)න

𝐻𝑛

𝜕𝑓

𝜕𝑥1
′

𝜕𝑓

𝜕𝑥2
′ 𝑑𝑥

𝜈2
𝑅 = 𝑠𝑖𝑛( 𝜃)2𝜈1 + 𝑐𝑜𝑠( 𝜃)2𝜈2 − 𝑠𝑖𝑛( 𝜃) 𝑐𝑜𝑠( 𝜃)න

𝐻𝑛

𝜕𝑓

𝜕𝑥1
′

𝜕𝑓

𝜕𝑥2
′ 𝑑𝑥

𝜈3
𝑅 = 𝜈3
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Note that 𝛻𝑥𝑓𝑅 ෠𝑅𝑥 = ෠𝑅𝑇𝛻𝑥′𝑓 𝑥′

𝐶𝑅 = ׬ 𝛻𝑥𝑓𝑅𝛻𝑥𝑓𝑅
𝑇 𝑑𝑥 = ෠𝑅𝑇𝐶 ෠𝑅 , 𝐶 = 𝑊𝛬𝑊𝑇 - a matrix of  𝑓 𝑥′

The results of  AS  are exactly the same as in the case with no rotation: 

𝐶𝑅 and 𝐶 have the same eigenvalues, 𝑊𝑅 = ෠𝑅𝑇𝑊. 

Active directions ෠𝑅𝑇𝑊1 , 

A low-dimensional approximation of 𝑓𝑅 ≈ 𝑔( ෠𝑅𝑇𝑊1𝑥). 

Active Subspaces for Problems with Rotations 
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Sobol’ SI: 𝐷 =
𝑎2

8
+

𝑏𝜋4

5
+

𝑏2𝜋8

18
+

1

2
,

𝑆1
𝑡𝑜𝑡 =

1

𝐷

1

2
+

𝑏𝜋4

5
+

𝑏2𝜋8

18
, 𝑆2

𝑡𝑜𝑡 =
𝑎2

8𝐷
, 𝑆3

𝑡𝑜𝑡 =
𝑏2𝜋8

225𝐷
.

DGSM: 𝜈1 = 2𝜋2 +
4𝑏𝜋6

5
+

2𝑏2𝜋10

9
, 𝜈2 = 2𝑎2𝜋2, 𝜈3 =

32𝑏2𝜋8

7
.

Results for a=7, b=0.1. 

DGSM and Sobol SI. Ishigami function without rotation

Variable 𝑆𝑖
𝑡𝑜𝑡 𝜈𝑖

1 0.55 304.75

2 0.44 967.22

3 0.24 433.76
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DGSM and Sobol SI. Ishigami function (a=7, b=0.1) with rotation

Rotation: 𝜃 = π/4, 

𝜈𝑖
𝑅 = 𝜈1 + 𝜈2, 𝑖 = 1,2 ; 𝜈3

𝑅 = 𝜈3

Scatter plots

Results are inconclusive 

Variable 𝑆𝑖
𝑡𝑜𝑡 𝜈𝑖

1 0.75 635

2 0.73 635

3 0.24 411
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Rotation: 𝜃 = π/4. 

𝛬 =    [240.4; 103.4; 78.8],

W =
− 2/2 0.0 − 2/2

− 2/2 0.0 2/2
0.0 1.0 0.0

Active Subspaces. Ishigami function (a=7, b=0.1) with rotation

The scatter plots in the active dimensional Active directions
space are the same as in the case of no rotation  
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rotation: 𝜃 = π/4 without rotation 

dominant first two inputs – same ranking different ranking for all inputs

DGSM and Sobol SI. Ishigami function (a=1, b=0.01) with rotation

Variable 𝑆𝑖 𝑆𝑖
𝑡𝑜𝑡 𝜈𝑖

1 0.82 0.86 29.5

2 0.14 0.14 19.7

3 0.0 0.04 4.33

Variable 𝑆𝑖 𝑆𝑖
𝑡𝑜𝑡 𝜈𝑖

1 0.15 0.81 26

2 0.13 0.79 26

3 0.0 0.04 4.1

  

 
 

Scatter plots don’t reveal any patterns Scatter plots in the active 
dimensional space are the same as in 
the case of no rotation  
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rotation: 𝜃 = π/4

𝛬 =    [7.6; 4.9; 1.04],

W =
− 2/2 − 2/2 0.0

2/2 − 2/2 0.0
0.0 0.0 1.0

𝜆1, 𝜆2 ≫ 𝜆3 – 2D active subspace is defined by

𝛬1=    [7.6; 4.9], 𝑊1 =
2/2 − 2/2

− 2/2 − 2/2
0.0 0.0

- dimension reduction from 3D to 2D

Active Subspaces. Ishigami function (a=1, b=0.01)

2D plots in the active dimensional space are the same as in the case of no 
rotation  
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Proposition. Let 𝒩𝑛(𝜇, Σ) be the 𝑛-multivariate Gaussian distribution, ℒ

be the Cholesky factor of Σ

If 𝑥 = (𝑥𝑗 , 𝑥∼𝑗) ∼ 𝒩𝑛(𝜇, Σ), then there exists 𝑑 − 1 independent random

variables Z ∼ 𝒩𝑛−1(0, 𝐼) and a function 𝑟𝑗: 𝑅
𝑛→ 𝑅𝑛−1 such that 𝑥 𝑗 is

independent of Z and

𝑥∼𝑗 =
𝑛
𝑟𝑗 𝑥𝑗 , 𝑍 = ℒ

1

𝜎𝑗
[𝑥𝑗−𝐸(𝑥𝑗)]

𝑍
+ 𝜇

∼1

,

where 𝜎𝑗 is the standard deviation of 𝑥 𝑗 and [. ]∼1 means that the first 

element of the vector is excluded. 

Ref: M. Lamboni, S. Kucherenko Multivariate sensitivity analysis and derivative-
based global sensitivity measures with dependent variables, RESS, 212 (2021) 107519 

Models with correlated inputs
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𝑓(𝑥) = 𝑥1 +𝑥2 ,

𝑥 ∼ 𝒩 0,
𝜎1
2 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎2
2 .

Using representation 𝑓 𝑋1, 𝑟1(𝑥1, 𝑍2) , 𝑓 𝑥2, 𝑟2(𝑥2, 𝑍1)

We find
𝜕𝑓

𝜕𝑥1
= 1 +

𝜌𝜎2

𝜎1
,
𝜕𝑓

𝜕𝑥2
= 1 +

𝜌𝜎1

𝜎2

Denote A =
𝜎2

𝜎1
, M =

1+𝜌A

1+𝜌/A
.

Applying AS methodology we find:

𝛬 = [(1 + 𝜌A)2+ (1 +
𝜌

A
)2, 0],

𝑊 =

𝑀

1+𝑀2
−

1

𝑀 1 + (1/𝑀)2

1

1 + 𝑀2

1

1 + (1/𝑀)2

𝑦 = 𝑊1
𝑇𝑥 =

𝑀

1+𝑀2
𝑥1+

𝟏

1+𝑀2
𝑥2 - active direction

𝑧 = 𝑊2
𝑇𝑥 = −

1

𝑀 1+(1/𝑀)2
𝑥1+

1

1+(1/𝑀)2
𝑥2 - not active direction

Linear model with correlated inputs. Active Subspaces
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Linear model with correlated inputs. AS, Sobol SI and DGSM 

𝑆1 =
𝜎1 + 𝜌𝜎2

2

𝜎1
2 + 𝜎2

2 + 2𝜌𝜎1𝜎2
, 𝑆1

𝑇 =
𝜎1
2 1 − 𝜌2

𝜎1
2 + 𝜎2

2 + 2𝜌𝜎1𝜎2
,

𝑆2 =
𝜎2 + 𝜌𝜎1

2

𝜎1
2 + 𝜎2

2 + 2𝜌𝜎1𝜎2
, 𝑆2

𝑇 =
𝜎2
2 1 − 𝜌2

𝜎1
2 + 𝜎2

2 + 2𝜌𝜎1𝜎2

𝜈1 = (1 + 𝜌A)2, 𝜈2 = (1 + 𝜌/A)2

Extreme case 1.     𝜌=0.0, → M=1

𝛬 = [2, 0], 𝑊 =

1

2
−

1

2
1

2

1

2

𝑦 = 𝑊1
𝑇𝑥 =

1

2
𝑥1+

1

2
𝑥2 - active direction

𝑧 = 𝑊2
𝑇𝑥 = −

1

2
𝑥1+

1

2
𝑥2 - not active direction

𝑆1 = 𝑆1
𝑇 =

𝜎1
2

𝜎1
2+𝜎2

2+2𝜎1𝜎2
, 𝑆2 = 𝑆2

𝑇 =
𝜎2
2

𝜎1
2+𝜎2

2+2𝜎1𝜎2

𝜈1 = 𝜈2 = 1
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Linear model with correlated inputs. AS, Sobol SI and DGSM

Extreme case 2. 𝜎2→0, A =0, M=0

𝛬 = [→ ∝, 0], 𝑊 =
0 −1
1 0

𝑦 = 𝑊1
𝑇𝑥 = 𝑥2 - active direction

𝑧 = 𝑊2
𝑇𝑥 = −𝑥1 - not active direction

𝑆1 = 1, 𝑆1
𝑇= 1 − 𝜌2 ,

𝑆2 = 𝜌2, 𝑆2
𝑇=0

𝜈1 =1, 𝜈2→ ∝

Ref.: S. Kucherenko, S. Tarantola, P. Annoni. Estimation of global sensitivity indices 
for models with dependent variables, Comp. Physics Comm., 183 (2012) 937–946 
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𝑥 ∼ 𝒩 0,

𝜎1
2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3

𝜌12𝜎1𝜎2 𝜎2
2 𝜌23𝜎2𝜎3

𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3
2

𝜎1
2=10, 𝜎2

2=0.1, 𝜎3
2=0.1,

𝜌12=0.1, 𝜌13= 𝜌23=0

𝛬 =    [1.15; 0.12; 0.0],

𝜆1, 𝜆2 ≫ 𝜆3 – 2D active subspace is defined by

𝛬1=    [1.15; 0.12], 𝑊1 =
−0.6 −0.8
−0.8 0.6
0.0 0.0

Ishigami function (a=1, b=0.01) with correlated inputs

Scatter plots in the active 
dimensional space



.

20

Ishigami function (a=1, b=0.01) with correlated inputs

Random walk (RW) in R3  (yellow line) 
and its projection on 2D AS 

Active directions  Random walk on 2D function 
approximant on active subspace

RW on full model (red dots) and its 
projection on 2D AS (blue line)
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1. The AS method is capable of finding new directions in which 
parameters have the same importance regardless of their space 
orientation. 

2. Sobol’ and DGSM methods are unable to identify directions and rank 
parameters in active subspaces rather than in original directions. 

3. The AS method allows dimension reduction by ingoring inactive 
variables.

4. We generalised the AS methodology for the case of models with 
dependent variables and showed its efficiency

Summary
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Constantine et al. introduced the so-called activity score defined as 

𝑎𝑖(𝑘) =෍

𝑗=1

𝑘

𝜆𝑗𝑤𝑖,𝑗
2 , 𝑖 = 1, . . . , 𝑛

- a combined reflection of the contribution of each input variable to the active subspace.

A link between the activity score and DGSM:

𝑎𝑖(𝑛) =෍

𝑗=1

𝑛

𝜆𝑗𝑤𝑖,𝑗
2 = 𝜈𝑖 , 𝑖 = 1, . . . , 𝑛

Ref.: Paul G. Constantine, Paul Diaz, Global sensitivity metrics from active subspaces, Reliability Engineering 
and System Safety 162 (2017) 1–13.

Link between DGSM and Active subspaces

22
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Linear function: 𝑓(𝑥) = 𝑥1 +𝑥2+𝑥3 ,

𝑥 ∼ 𝒩 0,

𝜎1
2 𝜌12𝜎1𝜎2 𝜌13𝜎1𝜎3

𝜌12𝜎1𝜎2 𝜎2
2 𝜌23𝜎2𝜎3

𝜌13𝜎1𝜎3 𝜌23𝜎2𝜎3 𝜎3
2

.

Model (𝑥1, 𝑥 2, 𝑥 3) as follows: (𝑥2, 𝑥 3) = 𝑟1(𝑥1, 𝑍2, 𝑍3) ,

{

𝑋2 =
𝜌12𝜎2
𝜎1

𝑋1 + 1 − 𝜌12
2 𝑍2

𝑋3 =
𝜌13𝜎3
𝜎1

𝑋1 +
𝜎3(𝜌23 − 𝜌12𝜌13)

𝜎2 1 − 𝜌12
2

𝑍2 +
1 − 𝜌12

2 − 𝜌13
2 − 𝜌23

2 + 2𝜌12𝜌13𝜌23

1 − 𝜌12
2 𝑍3 ,

.

𝑍𝑗 ∼ 𝒩 0, 𝐼 , 𝑗 = 2, 3, 𝑍2, 𝑍3, 𝑋1 are independent. 

Thus, 𝑓 𝑋1, 𝑟1(𝑥1, 𝑍2, 𝑍3) = 1 +
𝜌12𝜎2

𝜎1
+

𝜌13𝜎3

𝜎1
𝑋1

+ 1 − 𝜌12
2 +

𝜎3(𝜌23−𝜌12𝜌13)

𝜎2 1−𝜌12
2

𝑍2

+
1−𝜌12

2 −𝜌13
2 −𝜌23

2 +2𝜌12𝜌13𝜌23

1−𝜌12
2 𝑍3

then
𝜕𝑓

𝜕𝑥1
= 1 +

𝜌12𝜎2

𝜎1
+

𝜌13𝜎3

𝜎1

Similarly we find 𝑓 𝑥2, 𝑟2(𝑥2, 𝑍1, 𝑍3) ,
𝜕𝑓

𝜕𝑥2
, … .

Models with correlated inputs. Derivatives


