Comparison of Active Subspaces and Global Sensitivity Measures for Problems with Rotations and Dependent Variables

Sergei Kucherenko
Imperial College London, UK,
Peter Yatsyshin
The Alan Turing Institute, UK
Nilay Shah
Imperial College London, UK

Outline

Motivation: Sensitivity analysis of parameters, or their combinations regardless of their space orientation

Active subspaces
Link between Active subspaces, Derivative based global sensitivity measures (DGSM) and Sobol' sensitivity indices

Models with rotations and correlated variables

Motivation

Sensitivity analysis (SA) should be able to quantify uncertainty of parameters, or their combinations regardless of their space orientation for example for directions not aligned with the axes of the parameter space

Active subspaces (AS) identifies important directions in the parameter space which allows

1) dimension reduction
2) to perform SA invariant of space rotations

Active Subspaces

$f(x) \in C^{1}, x \in \mathbb{R}^{n}, x \sim p(x),\left\{\frac{\partial f(x)}{\partial x_{i}}\right\} \in L^{2}, \forall i=1, \ldots, n$
Compute matrix $C=E\left[\nabla f \nabla f^{T}\right]$ and its eigenvalue decomposition: $C=W \Lambda W^{T}$,
$\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots \lambda_{n}\right), \lambda_{1} \geq \cdots \geq \lambda_{n}$ are eigenvalues,
W - orthogonal matrix of eigenvectors forming the basis of \mathbb{R}^{n}.
Find a partition $\Lambda=\left[\begin{array}{ll}\Lambda_{1} & \\ & \Lambda_{2}\end{array}\right]$, $W=\left[\begin{array}{ll}W_{1} & W_{2}\end{array}\right]$,
W_{1} - eigenvectors of the top k eigenvalues ($k \ll n$),
Their span is called the "active subspace" (AS) .
$x=W W^{T} x=W_{1} W_{1}^{T} x+W_{2} W_{2}^{T} x=W_{1} y+W_{2} z$,
$f(x)=f\left(W_{1} y+W_{2} z\right) \approx g(y)$, where $y=W_{1}^{T} x, y \in \mathbb{R}^{k}$ - active variables, $z \in \mathbb{R}^{n-k_{-}}$- inactive variables

Ref.: P.G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies, SIAM, Philadelphia, 2015

Derivative based global sensitivity measures (DGSM) and and their link with Active subspaces

$$
\begin{aligned}
& f(\boldsymbol{x}) \in C\left(H^{n}\right),\left\{\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}\right\} \in L^{2}\left(H^{n}\right), \forall i=1, \ldots, n \\
& v_{i}=\int_{H^{n}}\left(\frac{\partial f(\boldsymbol{x})}{\partial x_{i}}\right)^{2} d \boldsymbol{x} \\
& S_{i}^{t o t} \leq \frac{v_{i}}{\pi^{2} D}
\end{aligned}
$$

Link with Active subspaces
$v_{i}=C_{i i}$

Ref.: Sobol' I.M., Kucherenko S. A new derivative based importance criterion for groups of variables and its link with the global sensitivity index. Comp. Physics Comm., 181, 1212-1217, 2010)

Active Subspaces for Problems with Rotations

Consider model in transformed coordinates: $x^{\prime}=\hat{R} x$, rotation matrix \hat{R} is orthogonal.

Consider the link between sensitivity measures of $f\left(x^{\prime}\right)$ with respect to x^{\prime} coordinates and $f_{R}=f(\hat{R} x)$ with respect to x coordinates.

Example 1. Ishigami function

$$
f\left(x^{\prime}\right)=\sin x^{\prime}{ }_{1}+a \sin ^{2} x^{\prime}{ }_{2}+b x_{3}^{\prime 4} \sin x^{\prime}{ }_{1}, x^{\prime}{ }_{i} \in[-\pi,-\pi], i=1,2,3
$$

Example 2. Ishigami function with rotation on θ

$$
\begin{gathered}
\widehat{\boldsymbol{R}}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] \\
f_{R}(x)=\sin \left(\cos (\theta) x_{1}-\sin (\theta) x_{2}\right)+a \sin ^{2}\left(\cos (\theta) x_{1}+\sin (\theta) x_{2}\right) \\
+b x_{3}^{4} \sin \left(\cos (\theta) x_{1}-\sin (\theta) x_{2}\right)
\end{gathered}
$$

Ishigami function

without rotation

$$
f\left(x^{\prime}{ }_{1}, x^{\prime}{ }_{2}, x^{\prime}{ }_{3}=0.0\right)
$$

rotation on $\theta=\pi / 4$

$$
f_{R}\left(x_{1}, x_{2}, x_{3}=0.0\right)
$$

Contour lines

Link between DGSM for problems with rotations

Note that $\frac{\partial f_{R}}{\partial x_{i}}=\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}^{\prime}} \frac{\partial x_{j}^{\prime}}{\partial x_{i}}$.

$$
\frac{\partial x_{j}^{\prime}}{\partial x_{i}}=r_{j i}, r_{j i} \text { - elements of } \hat{R}
$$

$v_{i}^{R}=\int_{H^{n}}\left[\sum_{j=1}^{n} r_{j i} \frac{\partial f}{\partial x_{j}^{\prime}}\right]^{2} d x=\sum_{j=1}^{n} r_{j i} v_{i}+\sum_{j=1}^{n} \sum_{k \neq j,}^{n} r_{j i} r_{k i} \int_{H^{n}}\left[\frac{\partial f}{\partial x_{j}^{\prime}} \frac{\partial f}{\partial x_{k}^{\prime}}\right] d x$

Example. $f\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ with corresponding v_{1}, v_{2}, v_{3}.

$$
\begin{aligned}
\hat{R}= & {\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right] } \\
& v_{1}^{R}=\cos (\theta)^{2} v_{1}+\sin (\theta)^{2} v_{2}+\sin (\theta) \cos (\theta) \int_{H^{n}}\left[\frac{\partial f}{\partial x_{1}^{\prime}} \frac{\partial f}{\partial x_{2}^{\prime}}\right] d x \\
& v_{2}^{R}=\sin (\theta)^{2} v_{1}+\cos (\theta)^{2} v_{2}-\sin (\theta) \cos (\theta) \int_{H^{n}}\left[\frac{\partial f}{\partial x_{1}^{\prime}} \frac{\partial f}{\partial x_{2}^{\prime}}\right] d x \\
& v_{3}^{R}=v_{3}
\end{aligned}
$$

Active Subspaces for Problems with Rotations

Note that $\nabla_{x} f_{R}(\hat{R} x)=\hat{R}^{T} \nabla_{x^{\prime}} f\left(x^{\prime}\right)$

$$
C_{R}=\int \nabla_{x} f_{R} \nabla_{x} f_{R}^{T} d x=\hat{R}^{T} C \hat{R}, C=W \Lambda W^{T}-\text { a matrix of } f\left(x^{\prime}\right)
$$

The results of AS are exactly the same as in the case with no rotation:
C_{R} and C have the same eigenvalues, $W_{R}=\hat{R}^{T} W$.

Active directions $\hat{R}^{T} W_{1}$,
A low-dimensional approximation of $f_{R} \approx g\left(\hat{R}^{T} W_{1} x\right)$.

DGSM and Sobol SI. Ishigami function without rotation

Sobol' SI: $D=\frac{a^{2}}{8}+\frac{b \pi^{4}}{5}+\frac{b^{2} \pi^{8}}{18}+\frac{1}{2}$,
$S_{1}^{t o t}=\frac{1}{D}\left[\frac{1}{2}+\frac{b \pi^{4}}{5}+\frac{b^{2} \pi^{8}}{18}\right], S_{2}^{t o t}=\frac{a^{2}}{8 D}, S_{3}^{t o t}=\frac{b^{2} \pi^{8}}{225 D}$.
DGSM: $v_{1}=2 \pi^{2}+\frac{4 b \pi^{6}}{5}+\frac{2 b^{2} \pi^{10}}{9}, v_{2}=2 a^{2} \pi^{2}, v_{3}=\frac{32 b^{2} \pi^{8}}{7}$.

Results for $a=7, b=0.1$.

Variable	$S_{i}^{\text {tot }}$	v_{i}
1	0.55	304.75
2	0.44	967.22
3	0.24	433.76

DGSM and Sobol SI. Ishigami function ($a=7, b=0.1$) with rotation

$$
\begin{aligned}
& \text { Rotation: } \theta=\pi / 4 \\
& v_{i}^{R}=v_{1}+v_{2}, \quad i=1,2 ; v_{3}^{R}=v_{3}
\end{aligned}
$$

Variable	$S_{i}^{\text {tot }}$	v_{i}
1	0.75	635
2	0.73	635
3	0.24	411

Active Subspaces. Ishigami function $(a=7, b=0.1)$ with rotation
Rotation: $\theta=\pi / 4$.

$$
\Lambda=\quad[240.4 ; 103.4 ; 78.8],
$$

$W=\left[\begin{array}{ccc}-\sqrt{2} / 2 & 0.0 & -\sqrt{2} / 2 \\ -\sqrt{2} / 2 & 0.0 & \sqrt{2} / 2 \\ 0.0 & 1.0 & 0.0\end{array}\right]$

The scatter plots in the active dimensional
Active directions space are the same as in the case of no rotation

DGSM and Sobol SI. Ishigami function ($a=1, b=0.01$) with rotation

rotation: $\theta=\pi / 4$

Variable	S_{i}	$S_{i}^{\text {tot }}$	v_{i}
1	0.15	0.81	26
2	0.13	0.79	26
3	0.0	0.04	4.1

dominant first two inputs - same ranking

Scatter plots don't reveal any patterns
without rotation

Variable	S_{i}	$S_{i}^{\text {tot }}$	v_{i}
1	0.82	0.86	29.5
2	0.14	0.14	19.7
3	0.0	0.04	4.33

different ranking for all inputs

Scatter plots in the active dimensional space are the same as in the case of no rotation

Active Subspaces. Ishigami function ($a=1, b=0.01$)
rotation: $\theta=\pi / 4$
$\Lambda=$ [7.6; 4.9; 1.04],
$W=\left[\begin{array}{ccc}-\sqrt{2} / 2 & -\sqrt{2} / 2 & 0.0 \\ \sqrt{2} / 2 & -\sqrt{2} / 2 & 0.0 \\ 0.0 & 0.0 & 1.0\end{array}\right]$
$\lambda_{1}, \lambda_{2} \gg \lambda_{3}-2 \mathrm{D}$ active subspace is defined by
$\Lambda_{1}=\quad[7.6 ; 4.9], W_{1}=\left[\begin{array}{cc}\sqrt{2} / 2 & -\sqrt{2} / 2 \\ -\sqrt{2} / 2 & -\sqrt{2} / 2 \\ 0.0 & 0.0\end{array}\right]$ - dimension reduction from 3D to 2D

2D plots in the active dimensional space are the same as in the case of no rotation

Models with correlated inputs

Proposition. Let $\mathcal{N}_{n}(\mu, \Sigma)$ be the n-multivariate Gaussian distribution, \mathcal{L} be the Cholesky factor of Σ

If $x=\left(x_{j}, x_{\sim j}\right) \sim \mathcal{N}_{n}(\mu, \Sigma)$, then there exists $d-1$ independent random variables $\mathrm{Z} \sim \mathcal{N}_{n-1}(0, I)$ and a function $r_{j}: R^{n} \rightarrow R^{n-1}$ such that x_{j} is independent of Z and

$$
x_{\sim j} \stackrel{n}{=} r_{j}\left(x_{j}, Z\right)=\left[\mathcal{L}\left[\begin{array}{c}
\frac{1}{\sigma_{j}}\left[x_{j}-E\left(x_{j}\right)\right] \\
Z
\end{array}\right]+\mu\right]_{\sim 1},
$$

where σ_{j} is the standard deviation of x_{j} and $[.]_{\sim}$ means that the first element of the vector is excluded.

Ref: M. Lamboni, S. Kucherenko Multivariate sensitivity analysis and derivativebased global sensitivity measures with dependent variables, RESS, 212 (2021) 107519

Linear model with correlated inputs. Active Subspaces

$f(x)=x_{1}+x_{2}$,
$x \sim \mathcal{N}\left(0,\left[\begin{array}{cc}\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\ \rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}\end{array}\right]\right)$.
Using representation $f\left(X_{1}, r_{1}\left(x_{1}, Z_{2}\right)\right), f\left(x_{2}, r_{2}\left(x_{2}, Z_{1}\right)\right)$
We find $\frac{\partial f}{\partial x_{1}}=\left(1+\frac{\rho \sigma_{2}}{\sigma_{1}}\right), \frac{\partial f}{\partial x_{2}}=\left(1+\frac{\rho \sigma_{1}}{\sigma_{2}}\right)$
Denote $\mathrm{A}=\frac{\sigma_{2}}{\sigma_{1}}, \mathrm{M}=\frac{1+\rho \mathrm{A}}{1+\rho / \mathrm{A}}$.

Applying AS methodology we find:
$\Lambda=\left[(1+\rho \mathrm{A})^{2}+\left(1+\frac{\rho}{\mathrm{A}}\right)^{2}, 0\right]$,
$W=\left[\begin{array}{cc}\frac{M}{\sqrt{1+M^{2}}} & -\frac{1}{M \sqrt{1+(1 / M)^{2}}} \\ \frac{1}{\sqrt{1+M^{2}}} & \frac{1}{\sqrt{1+(1 / M)^{2}}}\end{array}\right]$
$y=W_{1}^{T} x=\frac{M}{\sqrt{1+M^{2}}} x_{1}+\frac{1}{\sqrt{1+M^{2}}} x_{2} \quad$ - active direction
$z=W_{2}^{T} x=-\frac{1}{M \sqrt{1+(1 / M)^{2}}} x_{1}+\frac{1}{\sqrt{1+(1 / M)^{2}}} x_{2}$ - not active direction

Linear model with correlated inputs. AS, Sobol SI and DGSM

$$
\begin{aligned}
& S_{1}=\frac{\left(\sigma_{1}+\rho \sigma_{2}\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}}, S_{1}^{T}=\frac{\sigma_{1}^{2}\left(1-\rho^{2}\right)}{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}}, \\
& S_{2}=\frac{\left(\sigma_{2}+\rho \sigma_{1}\right)^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}}, S_{2}^{T}=\frac{\sigma_{2}^{2}\left(1-\rho^{2}\right)}{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \rho \sigma_{1} \sigma_{2}} \\
& v_{1}=(1+\rho \mathrm{A})^{2}, v_{2}=(1+\rho / \mathrm{A})^{2}
\end{aligned}
$$

Extreme case 1. $\quad \rho=0.0, \rightarrow \mathrm{M}=1$

$$
\begin{aligned}
& \Lambda=[2,0], \quad W=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] . \\
& y=W_{1}^{T} x=\frac{1}{\sqrt{2}} x_{1}+\frac{1}{\sqrt{2}} x_{2}-\quad \text { active direction } \\
& z=W_{2}^{T} x=-\frac{1}{\sqrt{2}} x_{1}+\frac{1}{\sqrt{2}} x_{2}-\text { not active direction } \\
& S_{1}=S_{1}^{T}=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \sigma_{1} \sigma_{2}}, S_{2}=S_{2}^{T}=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}+2 \sigma_{1} \sigma_{2}} \\
& v_{1}=v_{2}=1
\end{aligned}
$$

Extreme case 2. $\sigma_{2} \rightarrow 0, \mathrm{~A}=0, \mathrm{M}=0$

$$
\begin{aligned}
& \Lambda=[\rightarrow \propto, 0], \quad W=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \\
& y=W_{1}^{T} x=x_{2} \text { - active direction } \\
& z=W_{2}^{T} x=-x_{1} \text { - not active direction } \\
& S_{1}=1, S_{1}^{T}=\left(1-\rho^{2}\right) \\
& S_{2}=\rho^{2}, S_{2}^{T}=0 \\
& v_{1}=1, v_{2} \rightarrow \propto
\end{aligned}
$$

Ref.: S. Kucherenko, S. Tarantola, P. Annoni. Estimation of global sensitivity indices for models with dependent variables, Comp. Physics Comm., 183 (2012) 937-946

$$
\begin{aligned}
& x \sim \mathcal{N}\left(0,\left[\begin{array}{ccc}
\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} & \rho_{13} \sigma_{1} \sigma_{3} \\
\rho_{12} \sigma_{1} \sigma_{2} & \sigma_{2}^{2} & \rho_{23} \sigma_{2} \sigma_{3} \\
\rho_{13} \sigma_{1} \sigma_{3} & \rho_{23} \sigma_{2} \sigma_{3} & \sigma_{3}^{2}
\end{array}\right]\right) \\
& \sigma_{1}^{2}=10, \sigma_{2}^{2}=0.1, \sigma_{3}^{2}=0.1, \\
& \rho_{12}=0.1, \rho_{13}=\rho_{23}=0 \\
& \Lambda=[1.15 ; 0.12 ; 0.0], \\
& \lambda_{1}, \lambda_{2} \gg \lambda_{3}-2 D \text { active subspace is defined by } \\
& \Lambda_{1}=[1.15 ; 0.12], W_{1}=\left[\begin{array}{cc}
-0.6 & -0.8 \\
-0.8 & 0.6 \\
0.0 & 0.0
\end{array}\right]
\end{aligned}
$$

Scatter plots in the active dimensional space

Ishigami function ($a=1, b=0.01$) with correlated inputs

Active directions

Random walk (RW) in R^{3} (yellow line) and its projection on 2D AS

RW on function approximant on active subspace

Random walk on 2D function approximant on active subspace

RW on full model (red dots) and its projection on 2D AS (blue line)

Summary

1. The AS method is capable of finding new directions in which parameters have the same importance regardless of their space orientation.
2. Sobol' and DGSM methods are unable to identify directions and rank parameters in active subspaces rather than in original directions.
3. The AS method allows dimension reduction by ingoring inactive variables.
4. We generalised the AS methodology for the case of models with dependent variables and showed its efficiency

Link between DGSM and Active subspaces

Constantine et al. introduced the so-called activity score defined as

$$
a_{i}(k)=\sum_{j=1}^{k} \lambda_{j} w_{i, j}^{2}, \quad i=1, \ldots, n
$$

- a combined reflection of the contribution of each input variable to the active subspace.

A link between the activity score and DGSM:

$$
a_{i}(n)=\sum_{j=1}^{n} \lambda_{j} w_{i, j}^{2}=v_{i}, \quad i=1, \ldots, n
$$

Ref.: Paul G. Constantine, Paul Diaz, Global sensitivity metrics from active subspaces, Reliability Engineering and System Safety 162 (2017) 1-13.

Models with correlated inputs. Derivatives

Linear function:

$$
f(x)=x_{1}+x_{2}+x_{3}
$$

$x \sim \mathcal{N}\left(0,\left[\begin{array}{ccc}\sigma_{1}^{2} & \rho_{12} \sigma_{1} \sigma_{2} & \rho_{13} \sigma_{1} \sigma_{3} \\ \rho_{12} \sigma_{1} \sigma_{2} & \sigma_{2}^{2} & \rho_{23} \sigma_{2} \sigma_{3} \\ \rho_{13} \sigma_{1} \sigma_{3} & \rho_{23} \sigma_{2} \sigma_{3} & \sigma_{3}^{2}\end{array}\right]\right)$.
Model $\left(x_{1}, x_{2}, x_{3}\right)$ as follows: $\left(x_{2}, x_{3}\right)=r_{1}\left(x_{1}, Z_{2}, Z_{3}\right)$,

$$
\begin{aligned}
& X_{2}= \\
&\{ \\
& X_{3}=\frac{\rho_{12} \sigma_{2}}{\sigma_{1}} X_{1}+\sqrt{1-\rho_{12}^{2}} Z_{2} \\
& \sigma_{1} \rho_{13} \sigma_{3} \\
& X_{1}+\frac{\sigma_{3}\left(\rho_{23}-\rho_{12} \rho_{13}\right)}{\sigma_{2} \sqrt{1-\rho_{12}^{2}}} Z_{2}+\sqrt{\frac{1-\rho_{12}^{2}-\rho_{13}^{2}-\rho_{23}^{2}+2 \rho_{12} \rho_{13} \rho_{23}}{1-\rho_{12}^{2}}} Z_{3} \\
& Z_{j} \sim \mathcal{N}(0, I), j=2,3, Z_{2}, Z_{3}, X_{1} \text { are independent. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \quad f\left(X_{1}, r_{1}\left(x_{1}, Z_{2}, Z_{3}\right)\right)=\left(1+\frac{\rho_{12} \sigma_{2}}{\sigma_{1}}+\frac{\rho_{13} \sigma_{3}}{\sigma_{1}}\right) X_{1} \\
& +\left(\sqrt{1-\rho_{12}^{2}}+\frac{\sigma_{3}\left(\rho_{23}-\rho_{12} \rho_{13}\right)}{\sigma_{2} \sqrt{1-\rho_{12}^{2}}}\right) Z_{2} \\
& +\sqrt{\frac{1-\rho_{12}^{2}-\rho_{13}^{2}-\rho_{23}^{2}+2 \rho_{12} \rho_{13} \rho_{23}}{1-\rho_{12}^{2}}} Z_{3}
\end{aligned}
$$

then $\frac{\partial f}{\partial x_{1}}=\left(1+\frac{\rho_{12} \sigma_{2}}{\sigma_{1}}+\frac{\rho_{13} \sigma_{3}}{\sigma_{1}}\right)$
Similarly we find $f\left(x_{2}, r_{2}\left(x_{2}, Z_{1}, Z_{3}\right)\right), \frac{\partial f}{\partial x_{2}}, \ldots$.

