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Motivation

Sensitivity analysis (SA) should be able to quantify uncertainty of parameters, or their
combinations regardless of their space orientation for example for directions not aligned
with the axes of the parameter space

Active subspaces (AS) identifies important directions in the parameter space which allows
1) dimension reduction
2) to perform SA invariant of space rotations



Active Subspaces

af (x)
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f(x) ECl,xE]R",x~p(x),{ }ELZ,Vizl,...,n

Compute matrix C = E[VfoT] and its eigenvalue decomposition: C = WAWT,
A =diag(Ay, ... 4,), A1 = -+ = A, are eigenvalues,

W - orthogonal matrix of eigenvectors forming the basis of R".
. . A4
Find a partition A = l A ], W =[W; W],
2 .

W, - eigenvectors of the top k eigenvalues (k < n),
Their span is called the “active subspace” (AS) .
x=WWTx = WW{x+W,Wlx =W,y + W,z,

fx) = f(Wyy + W,2) = g(y), where y = Wl x, y € R¥ - active variables,
z € R™*-inactive variables

Ref.: PG. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter
Studies, SIAM, Philadelphia, 2015



Derivative based global sensitivity measures (DGSM) and
and their link with Active subspaces
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Link with Active subspaces
vy = Cy
Ref.: Sobol’ .M., Kucherenko S. A new derivative based importance criterion for groups of

variables and its link with the global sensitivity index. Comp. Physics Comm., 181, 1212-1217,
2010)



Active Subspaces for Problems with Rotations

Consider model in transformed coordinates: x’ = Rx,
rotation matrix R is orthogonal.

Consider the link between sensitivity measures of f(x') with respect
to x' coordinates and fr = f(Rx) with respect to x coordinates.

Example 1. Ishigami function
f(x") =sinx'y + asin®x’, + bxt*sinx'y, x';€ [-m,—n], i=1,2,3

Example 2. Ishigami function with rotation on 6

cos(8) —sin(@) O
R= sin(8) cos(@) O0].
0 0 1

fr(x) = sin(cos(0)x; — sin(0)x,) + asin?(cos(0)x; + sin()x,)
+bx3 sin( cos(0)x; — sin(8)xy)



without rotation

Ishigami function

rotationon 6 = /4

Contour lines



Link between DGSM for problems with rotations

6f n af ax
Note that ox; J=15x] axl'
ax} D
9%, = i Tji - elements of R

2
of of of
J-H" [ZJ 17ji 5,7 ]] dx = ] 1Tjivi +Z k:t] Tji Tki an [6 axk

Example. f(x1, x5, x3) with corresponding vy, v, V3 .

cos(8) —sin(@) O
R= sin(0) cos(@) O

0 0 1
af af]
vE = cos(0)?v, + sin(0)?v, + sin(0) cos(0) Jr (39{’ (39{’ dx
Hn [0X1 0X3)
O of
R _ o 2 20, o (
vy = sin(0)%vy + cos(0)“v, — sin(0) cos(0) I dx

Vg =3



Active Subspaces for Problems with Rotations

Note that V, fr(Rx) = RTV,/f(x")
Cp = [V.faVifa dx=RTCR, C = WAWT - a matrix of f(x")

The results of AS are exactly the same as in the case with no rotation:

Cr and C have the same eigenvalues, W, = RTW.

Active directions RTW, ,

A low-dimensional approximation of fr =~ g( RT W;x).



DGSM and Sobol SI. Ishigami function without rotation

a?  bm*  b2m® 1

Sobol’SI: D = —4+ —+ + -,
8 5 18 2
bZ 8 b27T8
stot = , Stot = tot _ .
+ + 8p’"3 225D
4bm® = 2b%m10 32b%m8
DGSM: v; = 2m? + — Vo = 2a%m? vy = ——.
5 9 7
Variable | Sfot v
1 0.55 | 304.75
Results for a=7, b=0.1. 2 0.44 | 967.22
3 0.24 | 433.76

Original model output

Original model output

0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
Input(1)

Original model output

0 0.1 0.2 03 0.4 05 06 0.7 0.8 0.9 1
Input(3)




DGSM and Sobol SI. Ishigami function (a=7, b=0.1) with rotation

Rotation: 9 - 1-[/4‘, Variable SitOt Vi
R _ R 1 075 | 635
Vi =V +tvy, i=12;v3 =v3 2 073|635
3 0.24 411

Original model output
Original model output

Original model output

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Input(3)

Scatter plots

Results are inconclusive n



0.1) with rotation

7,b

Active Subspaces. Ishigami function (a
[240.4; 103.4; 78.8],

Rotation: 8 = m/4.

A=

active direction 2

—V2/2
V2/2
0.0

1.0

/2 0.0

—V2/2 0.0
V2
0.0

12

Active directions

2D subspace in 3D space

0.5

-0.5

20

active direction 1
active direction 3

space are the same as in the case of no rotation

The scatter plots in the active dimensional

20
20
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DGSM and Sobol SI. Ishigami function (a=1, b=0.01) with rotation

rotation: 8 = /4

Variable S; Stot Vv
1 0.15 0.81 26
2 0.13 0.79 26
3 0.0 0.04 4.1

without rotation

Variable S; Sfot Vi
1 0.82 0.86 29.5
2 0.14 0.14 19.7
3 0.0 0.04 4.33

dominant first two inputs — same ranking different ranking for all inputs

active direction 1 active direction 2
3 :'- g b o
s:!" ?
25 2 :éi";gs 2
2 < ' "L.'.: .
E E 1 éf&"*f 1
. . 2 . §
g E 0s 0 {‘ih!f'g’;!iii. 0t
GEAAL :
- '. ) :.
15 N -2 < -2
-20 0.1 02 0.3 04 05 0.6 0.7 0.8 0.9 1 720 0.1 02 03 04 0.5 06 0.7 08 0.9 1 _1 _05 0 05 1 _1 _05 0 05 1
Input(1) Input(2)

Original model output

o 0.1 0.2 03 04 0.5 06 0.7 0.8 09 1
Input(3)

Scatter plots don’t reveal any patterns Scatter plots in the active
dimensional space are the same as in

the case of no rotation 3



Active Subspaces. Ishigami function (a=1, b=0.01)

rotation: 8 = /4
A= 1[7.6;4.9;1.04],
—/2/2 —J/2/2 0.0

W=IVv2/2 —v2/2 00
0.0 0.0 1.0

A1, A, > A3 — 2D active subspace is defined by

V2/2 —/2/2
A= [7.6;4.9], W1 =|_2/2 —2/2| -dimension reduction from 3D to 2D

0.0 0.0

Approxmant on 2D AS

2 Approxmant on 2D AS

W1(2)

2D plots in the active dimensional space are the same as in the case of no

rotation 14



Models with correlated inputs

Proposition. Let V,, (i, 2) be the n-multivariate Gaussian distribution, £
be the Cholesky factor of

If x = (xj,x.j) ~ Np(u, Z), then there exists d — 1 independent random
variables Z ~ N;,_1(0,1) and a function 7;: R®—= R™™! such that x; is

independent of Z and

o[ —E(x))]
Z

where o; is the standard deviation of x j and [. ] .; means that the first

x~j§rj(xj,Z) = [L +u

~1

element of the vector is excluded.

Ref: M. Lamboni, S. Kucherenko Multivariate sensitivity analysis and derivative-
based global sensitivity measures with dependent variables, RESS, 212 (2021) 107519
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Linear model with correlated inputs. Active Subspaces

f(x) =x1 +x3,
of po10;
x~N10, p0O102 o3

Using representation f (X, 11 (x1,Z5)), f (x5, 15 (x5, Z71))

We find — F (1 + paz) 9 (1 + pal)
X1

01 axz ()
o 1+pA
Denote A =2 M = —22

Applying AS methodology we find:
= [(1+pA)*+ (1 +5)2,0],

M 1 .
| M1+ (1/M)?
B 1 1
V1 + M? J1+ (@1/M)?z |
W 1
y = 1X \/7 X1 sz
zZ = Wsz = — ! .Xi"';
My 14+(1/M)? J1+(1/M)?

- active direction

X, - not active direction

16



Linear model with correlated inputs. AS, Sobol Sl and DGSM

o (otpom)? g ot (1 - p?)
Y62+ 02 4+ 2p0y0," " 02 + 02 4 2poyo,’
¢ = (02 + poy)? oT = o5 (1 - p?)
> g2+ 02+ 2poi0, % 02402+ 2poy0,
vi = (1 +pA)%,v, = (1 +p/A)?

Extreme case 1. p=0.0, > M=1

-1 17
A =1[2,0], W = \/E \/E
1 1
V2 V2
T 1 1 e
y =Wix=Zx+7x,- active direction
_ T _ i i ) . . .
z =W, x = — %X+ 7 X; - not active direction
_ T _ of _ T _ o5

S51=51 = ol+02+20,0,’ S2=5; = 02+02+42010,

V1=V2=1 17



Linear model with correlated inputs. AS, Sobol S| and DGSM

Extreme case 2. 0,0, A =0, M=0

A=[>x0], W= [(1) _01]

y = Wlx = x, - active direction
z = W] x = —x; - not active direction

S, =1,8T=(1-p?),
SZ = p2’ Sg =0

v =1L, v,> X

Ref.: S. Kucherenko, S. Tarantola, P. Annoni. Estimation of global sensitivity indices
for models with dependent variables, Comp. Physics Comm., 183 (2012) 937-946
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Ishigami function (a=1, b=0.01) with correlated inputs

active direction 1 ) active direction 2
of P120102 P130103
x ~N|0,]p12010, 03 P230203 1. o g |
P130103 P230203 o3 o ’
0£=10, 64=0.1, 0=0.1, S 0

p12=0.1, p13= p23=0

A= [1.15;0.12; 0.0],
A, A, > A3 — 2D active subspace is defined by

—-0.6 —0.8
A= [1.15;0.12], W; = [ —08 0.6 ] Scatter plots in the active
0.0 0.0

dimensional space

19



Ishigami function (a=1, b=0.01) with correlated inputs

R RW on function approximant on active subspace
2D active subspace in R

-1.5

0.5

’ WA1(:,1) 2
-1.5 -15 1.5 15

1

WA(:,2)

Active directions Random walk on 2D function
approximant on active subspace

Ishigami vs its AS approximant

RW and its projection on AS in R® 2

approximant
. original

fun value

0 5 10 15 20 25

Random walk (RW) in R3 (yellow line) RW on full model (red dots) and its

and its projection on 2D AS projection on 2D AS (blue line) 20



Summary

The AS method is capable of finding new directions in which
parameters have the same importance regardless of their space
orientation.

Sobol’ and DGSM methods are unable to identify directions and rank
parameters in active subspaces rather than in original directions.

The AS method allows dimension reduction by ingoring inactive
variables.

We generalised the AS methodology for the case of models with
dependent variables and showed its efficiency

21



Link between DGSM and Active subspaces

Constantine et al. introduced the so-called activity score defined as

k
Cll(k)=ZA]le’], i=1,...,7’l
j=1
- a combined reflection of the contribution of each input variable to the active subspace.

A link between the activity score and DGSM: -

n
ai(n)=ZAjwfj=vi, i=1,...,n
j=1

Ref.: Paul G. Constantine, Paul Diaz, Global sensitivity metrics from active subspaces, Reliability Engineering
and System Safety 162 (2017) 1-13.
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Models with correlated inputs. Derivatives

Linear function: f(x) =x1 +x,+x3,
2
01 P120102  P130103
2
x ~ N 0,|p12010; 02 P230203
2
P130103  P230203 03

Model (x4, x 5, x 3) as follows: (x,,x 3) = 11(x1,Z5,Z3),

P1202
X = o X1+"1—pf2Z2

{ :
Y. = P1303 Y.+ 03(p23 — P12P13)Z n 1= pi, = piz — P33 + 2p12P13P23 7
3 = 1 2 3
% o1 - piy 1-pf,
Zj ~ N(0,1),j=2,3, Z,,Z3,X; are independent.
Thus, f(X1,11(x1, 23, Z3)) = (1 + p;ﬂz + piag) X,
1 1

G —
+ 1—,0%2 + 3(P23—P12P13) 7,
02"1—P%2
— 2 _ 2 _ 2
+\/1 Pi2—P13 P23+2P12P13P23Z
2 3
1-p7,

then of _ (1 4 P1202 | P13U3>

6x1 01 01

Similarly we find f (x,, 1, (X2, Z1,Z3)), ;Tf’ .
2

23



