GLOBAL SENSITIVITY WITH OPTIMAL TRANSPORT

Presenter: Emanuele Borgonovo

Bocconi University

Joint work with Alessio Figalli, Elmar Plischke and Giuseppe Savarè

Joint work with

Alessio Figalli ETH Zurich

Elmar Plischke TU Clausthal

Giuseppe Savarè Bocconi University

Motivation

- —In several applications model output is multivariate in nature (e.g., vectorial, spatio-temporal dependent)
- —We can look at one component at a time
- —We also may wish to have an overall indicator of importance

Previous works

- —Marrel, Iooss, et al (2011), Models with spatially dependent outputs, Environmetrics.
- —Gamboa, Janon, Klein, Lagnoux (2014) Sensitivity Analysis for Multidimensional and Functional Outputs, *Generalized Sobol' Indices*
- —Rahman (2016) The f-sensitivity index (SIAM-JUQ)
- —Marrel, Saint-Geours, De Lozzo (2017) in Handbook of Uncertainty Quantification
- —Gamboa, Klein, Lagnoux (2018) Cramer von Mises Distances (SIAM-JUQ)

B Università Bocconi MILANO

 Fraiman, R., F. Gamboa, and L. Moreno. 2020. "Sensitivity Indices for
 Output on a Riemannian Manifold." *International Journal for Uncertainty Quantification* 10 (4): 297–314.

Previous work (cont.)

- Gamboa, Klein, Lagnoux, Moreno (2021), Sensitivity Analysis in General Metric Spaces: output belongs to a generic metric space
- Fort, Klein, Lagnoux (2021), sensitivity for stochastic outputs when the distance is the Wasserstein distance
- Lamboni (2019), (2020), generalized Sobol' indices and derivative based sensitivity measures
- Alexanderian, Gremaud and Smith (2020) variance-based indices are modified to take into account the temporal variation of the output process variance
- Zham, Constantine, Prieur Marzok, 2020, SIAM J Sc. Comp., with gradient based methods for multivariate vector valued functions
- Da Veiga (2021) (ArXiv) on sensitivity measures based on Kernel-embeddings
- Barr and Rabitz (2022), Siam-JUQ, also on a Kernel-based approach to global sensitivity analysis

Optimal transport

Bocconi

- —Originated by the work of Gaspard Monge (1781)
- Extended by Kantorovich to a more general formulation (1942)
- —Has received increasing attention in mathematics and artificial intelligence
- —Distance between images
- —Cuturi (2013) breakthrough paper on the solution of the OT problem using the Sinkhorn approximation
- Recent review in SIAM-Review by Chen et al (2021):
 "Stochastic Control Liaisons: Richard Sinkhorn meets
 Gaspard Monge on a Schrödinger Bridge"

–Over time two Fields medal Cedric Villani and Alessio Figalli

OT Formulation

 $-(\Omega,\mathcal{F},\mathbb{P})$ reference probability space, let v and v' be two probability measures on this space.

Given $\nu, \nu' \in \mathscr{P}(Y)$ we denote by $\Pi(\nu, \nu')$ the set of plans or couplings $\pi \in \mathscr{P}(\mathcal{Y} \times Y)$ whose marginals are ν and ν' respectively. Posed a lower semicontinuous cost function $k : Y \times Y \to [0, +\infty]$, the Kantorovich formulation of the optimal transport problem

$$K(\nu,\nu') = \inf_{\pi \in \Pi(\nu,\nu')} \mathcal{C}(\pi), \quad \mathcal{C}(\pi) := \int_{\mathsf{Y}^2} \mathsf{k}(y,z) \,\mathrm{d}\pi(y,z), \tag{1}$$

consists of finding a transfer plan $\pi \in \Pi(\nu, \nu')$ that minimizes the integrated cost \mathcal{C} .

The Wasserstein Distance

When $k(y,z) = d^p(y,z)$ for a suitable continuous metric $d : Y \times Y \rightarrow [0,+\infty)$, the Kantorovich problem

$$W_{p}^{p}(\nu,\nu') = \inf_{\pi \in \Pi(\nu,\nu')} \int d^{p}(y,z) \, d\pi(y,z)$$
(7)

defines the *p*-th power of the so-called *p*-Wasserstein distance W_p , which satisfies the axioms of a metric in the subset $\mathscr{P}_p(\mathsf{Y})$ whose measures have finite *p*-th moment

The Elliptical Distribution Case

In fact, ν and ν' are two normal distributions with mean values μ, μ' and covariance matrices Σ, Σ' respectively, then Givens and Shortt [1984] show that

$$W_2^2(\nu,\nu') = \|\mu - \mu'\|_2^2 + \operatorname{Tr}\left(\Sigma + \Sigma' - 2\left(\Sigma^{1/2}\Sigma'^{1/2}\right)^{1/2}\right),\tag{12}$$

where $\text{Tr}(\cdot)$ denotes the trace of a matrix and $\Sigma^{1/2}$ is the square root of a symmetric and positive matrix. Gelbrich [1990] extends this result for the case in which ν and ν' are two elliptical distributions with the same characteristic generator.

The quantity in Eq. (12) is called the squared Wasserstein-Bures distance

OT-based Global Sensitivity Measures

We define a family of probabilistic sensitivity measures based on optimal transport. We follow the notation in Section 2, and consider an OT-problem with a lower semicontinuous cost function $k : Y \times Y \rightarrow [0, +\infty]$ satisfying $k(y, y') = 0 \iff y = y'$.

Lemma 2. Let $\nu, \nu' \in \mathscr{P}(\mathsf{Y})$. The function $K(\cdot, \cdot) : \mathscr{P}(\mathsf{Y}) \times \mathscr{P}(\mathsf{Y}) \to [0, +\infty]$ defined by (1) is a separation measurement and $K(\nu, \nu') = 0 \iff \nu = \nu'$.

Definition 3. Let X, Y be random variables with laws μ, ν respectively and let $(\nu_x^{\mathcal{F}})_{x \in \mathsf{X}}$ be the conditional law of Y generated by (X, \mathcal{F}) . We call

$$\xi^{K}(Y,X) := \mathbb{E}[K(\mathbb{P}_{Y},\mathbb{P}_{Y|X})] = \int_{\mathsf{X}} K(\nu,\nu_{x}) \,\mathrm{d}\mu(x) \tag{22}$$

the OT-based global sensitivity measure of X with respect to Y.

Interpretation

- The most important input is the one for which we expect to spend more work (it is more costly on average) to pass from the distribution of Y to the conditional distribution of Y given X
- The class encompasses several global sensitivity measures. For instance it can be shown that the δ -importance measure (B. 2007) is a special case of an OT-based sensitivity measure if the space of the output is equipped with the discrete metric.

Properties 1: Zero-independence property

Proposition 5. $\xi^{K}(Y, X) \geq 0$ and $\xi^{K}(Y, X) = 0$ if and only if Y and X are statistically independent.

Properties 2: Functional Dependence

Let:

$$\mathbb{M}_{\mathsf{k}}[Y] := \int_{\mathsf{Y}^2} \mathsf{k}(y, y') \,\mathrm{d}\nu(y) \,\mathrm{d}\nu(y') = \mathbb{E}[\mathsf{k}(Y, Y')]$$

Lemma 6. For every random variable X, Y

$$\xi^{K}(Y,X) \le \mathbb{M}_{\mathsf{k}}[Y]; \tag{26}$$

in particular ξ^{K} is finite if $\mathbb{M}_{k}[Y] < \infty$. In this case, if Y is functionally dependent on X, i.e. $Y = f(X) \mathbb{P}$ -a.e. for some Borel map $f : X \to Y$, then $\xi^{K}(Y, X) = \mathbb{M}_{k}[Y]$ so that the maximum value is attained in (26).

Notable Case

Remark 7. When $Y = \mathbb{R}^m$ and $k(y, y') := |y - y'|^2$ we have $\mathbb{M}_k[Y] = \int_{Y^2} |y - y'|^2 d\nu(y) d\nu(y') = 2 \int_Y |y - \bar{\nu}|^2 d\nu(y) = 2 \text{Var}[Y],$ (27) where $\bar{\nu} := \int y d\nu(y) = \mathbb{E}[Y]$. The previous lemma then yields $\xi^{W_2^2} \leq 2 \text{Var}[Y].$ (28) In particular ξ^K is finite if $\mathbb{E}[|Y|^2] < \infty$.

A stronger result

Theorem 8. Assuming $Y \in L^2(\Omega, \mathbb{P})$, $\xi^{W_2^2}(Y, X) = \mathbb{M}_k[Y] = 2\operatorname{Var}[Y]$ if and only if there exists a Borel map $f : X \to Y$ such that $Y = f(X) \mathbb{P}$ -a.e.

A New Sensitivity Index

Definition 12. If $\mathbb{M}_{\mathsf{k}}[Y] > 0$, we let

$$\iota^{\mathsf{k}}(Y,X) = \frac{\xi^{K}(Y,X)}{\mathbb{M}_{\mathsf{k}}[Y]}$$
(32)

Based on the results of Section 3.1, we immediately have that for any cost k, $0 \leq \iota^{k}(Y,X) \leq 1$, with $\iota^{k}(Y,X) = 0$ indicating statistical independence and $\iota^{k}(Y,X) = 1$ in the case of functional dependence. In the remainder, we shall focus on the case in which the cost is associated with the squared 2-Wasserstein distance:

$$\iota(Y, X) = \frac{\xi^{W_2^2}(Y, X)}{2\mathbb{V}[Y]}.$$
(33)

With this choice, $\iota(Y, X) = 1$ is equivalent to functional dependence.

B Università Bocconi MILANO

The Wasserstein-Bures Case

Proposition 13. Assume that the second moment of Y is finite. If \mathbb{P}_Y is elliptical with generating function h, and $\mathbb{P}_{Y|X}$ is elliptical with the identical generating function h for

all values X, then

$$\iota(Y,X) = \frac{\mathbb{E}[\|\mathbb{E}[Y] - \mathbb{E}[Y|X]\|_2^2] + \mathbb{E}[\operatorname{Tr}\left(\Sigma_Y + \Sigma_{Y|X} - 2\left(\Sigma_Y^{1/2}\Sigma_{Y|X}\Sigma_Y^{1/2}\right)^{1/2}\right)]}{2\mathbb{V}[Y]},\qquad(34)$$

where the right hand side of (59) is the squared Wasserstein-Bures distance between \mathbb{P}_Y and $\mathbb{P}_{Y|X}$.

Advective and Diffusive Parts

— The previous index is the sum of two parts:

$$Adv_X = \frac{\mathbb{E}[\|\mathbb{E}[Y] - \mathbb{E}[Y|X]\|_2^2]}{2\mathbb{V}[Y]},$$

— That accounts for the shift in mean values (centers of mass), and

$$\operatorname{Diff}_{X} = \frac{\mathbb{E}[\operatorname{Tr}\left(\Sigma_{Y} + \Sigma_{Y|X} - 2\left(\Sigma_{Y}^{1/2}\Sigma_{Y|X}\Sigma_{Y}^{1/2}\right)^{1/2}\right)}{2\mathbb{V}[Y]}.$$

— That accounts for multi-directional dispersion around the means

Link to Gamboa et al Generalized Indices

Proposition 14. For Adv_X in (36), we have:

$$Adv_X = \mathbb{E}\left[\left\|\mathbb{E}[Y] - \mathbb{E}[Y|X_i]\right\|_2^2\right] = \mathbb{E}\left[\sum_{t=1}^{n_Y} (\mathbb{E}[Y_t] - \mathbb{E}[Y_t|X_i])^2\right] = \sum_{t=1}^{n_Y} \xi_i^{V,t}, \qquad (38)$$

where $\xi_i^{V,t}$ is the univariate variance-based sensitivity measure (19) of X_i with respect to Y_t . Moreover, if we assume that the inputs are independent then we have $Adv_X = \sum_{t=1}^{n_Y} \mathbb{V}[Y^t]S_X^t$, where S_X^t is the Sobol' first order sensitivity measure of X with respect to the t^{th} component of the output, Y^t .

Thus we have a variance contribution, plus other contributions in an OT-based sensitivity measure. If distributions are elliptical, we know the additional term, otherwise we have to solve the OT problem

Distortion

Theorem 10. Let (Z, \mathcal{G}) be a measurable space and let $g : X \to Z$ be a (μ, \mathcal{G}) -measurable map with $Z := g \circ X$. We have

$$\xi^{K}(Y,X) \ge \xi^{K}(Y,Z) = \xi^{K}(Y,(X,\mathcal{F}')), \text{ where } \mathcal{F}'^{-1}(\mathcal{G}) \subset \mathcal{F}.$$
(30)

In particular, if the σ -algebra generated by g coincides with \mathfrak{F} we have $\xi^{K}(Y,X) = \xi^{K}(Y,Z)$.

Monotonicity

Theorem 11. Let $(\mathcal{F}^n)_{n\in\mathbb{N}}$ be an increasing family of sub- σ -algebras in \mathcal{F} with $\mathcal{F} = \bigvee_{n=1}^{\vee} \mathcal{F}^n$. We have

$$\lim_{n \to \infty} \xi^K(Y, (X, \mathcal{F}^n)) = \xi^K(Y, (X, \mathcal{F})).$$
(31)

 ∞

ESTIMATION

Ishigami Function Distribution

2) Form the scatterplot

Partition the horizontal axis

Given Data Estimation Theorem

1. If X is finite then

$$\lim_{N \to \infty} \xi_N^K = \xi^K(Y, X). \tag{44}$$

2. In the general case, if (42) holds true,

$$\lim_{M \to \infty} \lim_{N \to \infty} \xi_{M,N}^K = \xi^K(Y,X).$$
(45)

Experiments

Figure 2: $\hat{\iota}(Y, X_i)$ for the multivariate-output analytical test case. The sample size is ixed at N = 50000. On the horizontal axis, partition cardinalities vary from M = 5 to M = 200.

The Given Data OT-problem

Equation (46) implies the solution of an OT-problem for each of the M partitions. If the cost function is the squared Wasserstein metric, we need to solve:

$$\inf_{\mathbf{s}} \sum_{k=1}^{N} \sum_{\substack{j:x_{j,i} \in \mathsf{X}_{\alpha}^{m}(N) \\ \text{subject to}}} s_{k,j} \sum_{t=1}^{n_{Y}} (y_{k,t} - y_{j,t})^{2}$$

$$\sup_{\mathbf{s}} s_{k,j} = \frac{1}{N}, \sum_{\substack{j:x_{j,i} \in \mathfrak{X}^{m}(N) \\ j:x_{j,i} \in \mathfrak{X}^{m}(N)}} s_{k,j} = \frac{1}{N_{m}}, \quad N_{m} = \#\{j: x_{j,i} \in \mathsf{X}^{m}(N)\},$$

$$(47)$$

Results for Alternative Solvers

Figure 1: Estimates and times for experiments with sample sizes from N = 50 to N = 1,000 for four different algorithmic estimators of $\iota(Y, X_i)$ for the multivariate-output analytical test case used in this section.

Conclusions

- New Family of Indices for Multivariate Responses based on the theory of optimal transport
- Convenient Properties
- Generalize the previous multivariate indices of Lamboni (2011) and Gamboa et al (2014)
- Experiments Carried out thus far show promising results
- OT is a topical subject in AI, recent works propose breakthroughs in solution algorithms with interesting application perspectives

