

University of Nottingham UK | CHINA | MALAYSIA

Introduction

Elementary effects is a popular choice for sensitivity analysis in the environmental and biological sciences, but the current formulation is not suitable for most real-life models. Furthermore, it is not clear which of the commonly used trajectory generation methods is best.

Traditional EE

- Effect for input *i*, output *j*: $ee_{ij}^n = \frac{Y_j(X^n + \delta_i e_i) Y_j(X^n)}{s_i}$;
- Assumed that $X_i \in [0,1] \subset \mathbb{R}$; $[X_i] = [Y_i] = 1$.

- Real-life models are dimensional & $X_i \notin [0,1]$;
- Sensitivity measures depend on input dimensions;
- This can lead to erroneous ranking results.
- Current trajectory generation methods are not compatible with integer/Boolean inputs.

Methods

Scaling effects

- Essential to ensure results are in line with notion of sensitivity (relative contribution of input variability to total variance in output); must be function of input range;
- We propose: $EE_{ij}^n = ee_{ij}^n \cdot c_i$; where $c_i = max(X_i) min(X_i)$.
- Drawback: $min(X_i)$, $max(X_i)$ are typically uncertain.

Identify (un)important inputs

- 1. Sensitivity measure: dimensionless & normalized median (χ) of absolute effects (based on [1,2]): $S_{\chi}(i,j) = \frac{\chi_{ij} c_i}{\sum_{l=1}^k \chi_{lj} c_l};$
- 2. Sort: $S_{\chi}(i_1, j) < S_{\chi}(i_1, j) < \dots < S_{\chi}(i_q, j) < \dots < S_{\chi}(i_k, j);$
- 3. Unimportant = $\{X_{i_1}, X_{i_2}, \dots, X_{i_q}\}$ (q follows from threshold set by modeller);
- 4. Important = X_i for which $S_{\chi}(i,j) > \mu(S_0) + 3\sigma(S_0)$, where $S_0 = \{S_{\chi}(i_1,j), \dots, S_{\chi}(i_q,j)\}$.

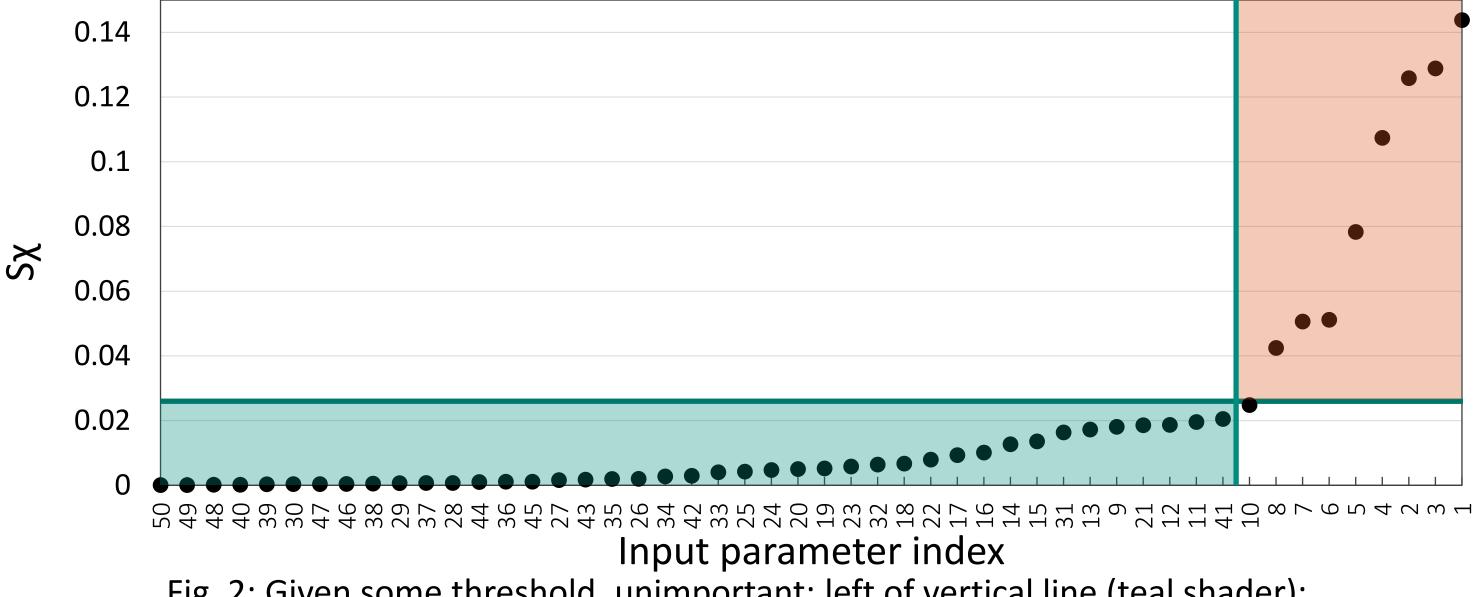


Fig. 2: Given some threshold, unimportant: left of vertical line (teal shader); important: above horizontal line (orange shader).

Elementary Effects: on general models and trajectory generation Rik J.L. Rutjens^{1,4} (pmxrr3@nottingham.ac.uk), L.R. Band^{1,2}, M.D. Jones³, M.R. Owen¹

¹ School of Mathematical Sciences; ² School of Biosciences; ³ School of Geography; ⁴ University of Nottingham Future Food Beacon of Excellence

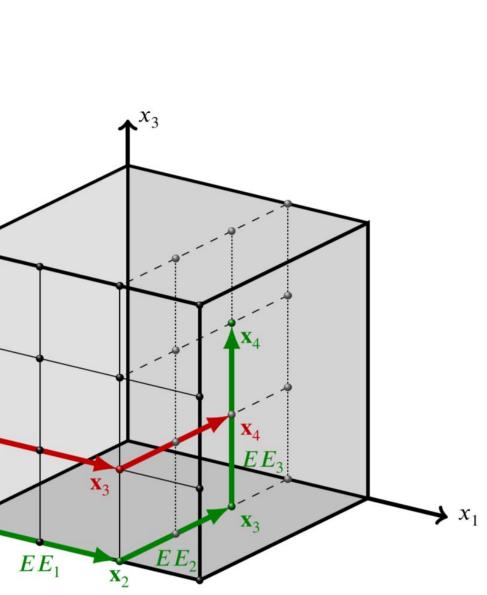
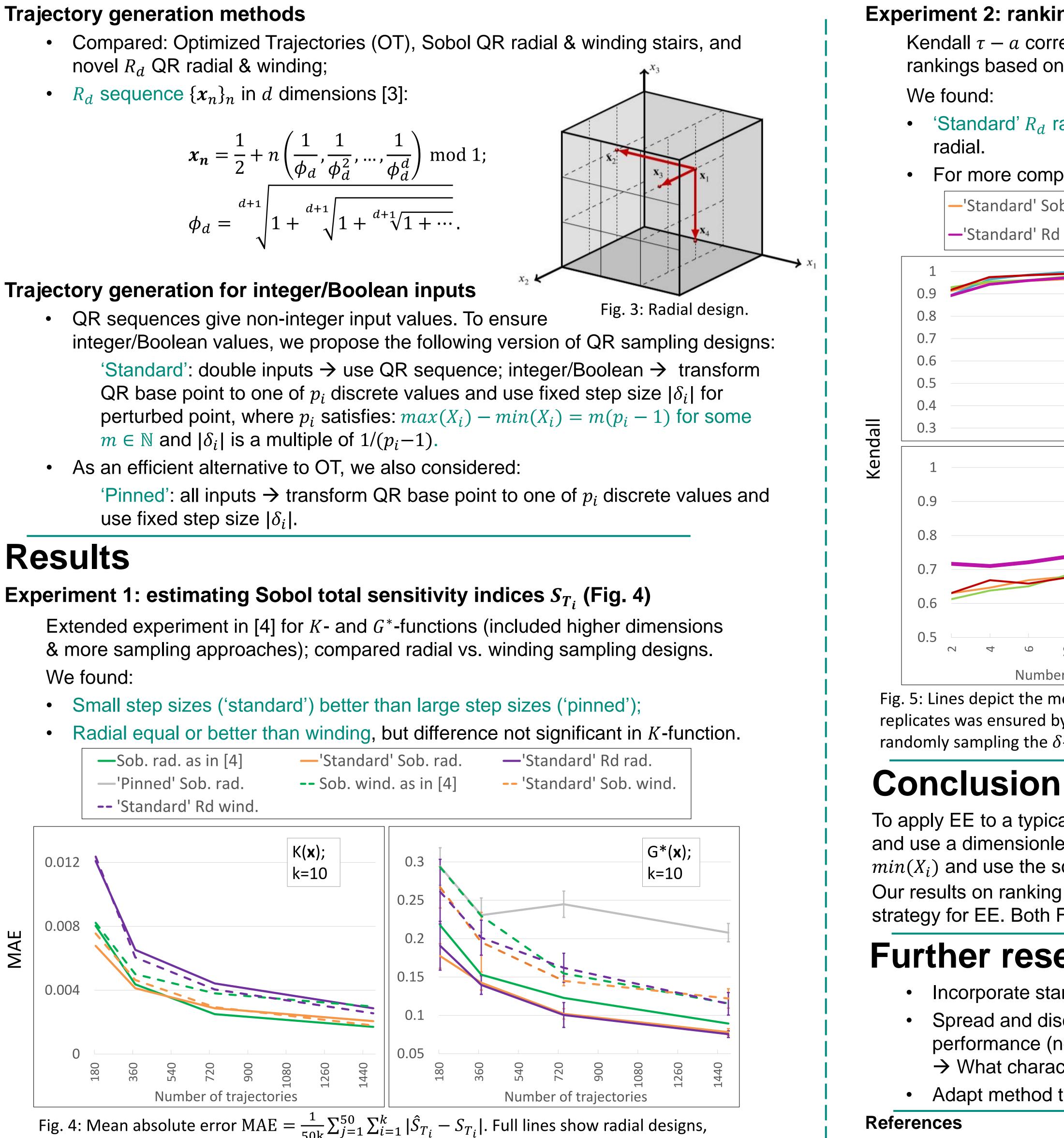


Fig. 1: Traditional winding design.


- novel R_d QR radial & winding;

$$x_{n} = \frac{1}{2} + n \left(\frac{1}{\phi_{d}}, \frac{1}{\phi_{d}^{2}}, \dots \right)$$
$$\phi_{d} = \sqrt{d+1} \sqrt{1 + \sqrt{$$

- use fixed step size $|\delta_i|$.

Results

We found:

dotted lines show winding designs. Left: MAE for 'Pinned' Sob. rad. was larger than plot range shown here. Right: mean ± 1 std is shown over 5 calculations of MAE.

- Spread and discrepancy of sampled simulation points are poor proxies of performance (not shown here); \rightarrow What characteristic should sampling designs be based on?
- Adapt method to deal with inherent randomness in model.

Experiment 2: ranking parameters using Elementary Effects (Fig. 5)

Kendall $\tau - a$ correlation between analytical and estimated rankings. Estimated rankings based on $S_{\gamma}(i, j)$. Included OT wherever computationally feasible.

• 'Standard' R_d radial overall top performer, slightly outperforming 'standard' Sobol

• For more complex output functions, #trajectories ≥ 20 beneficial;

Fig. 5: Lines depict the mean over 50 calculations of the Kendall correlation coefficient. Uniqueness of replicates was ensured by taking different sections of the QR sequence (K- and f-functions) or by randomly sampling the δ -parameter in the G^* -function (as in [4]). Note: different vertical axis ranges.

- To apply EE to a typical real-life thus dimensional model one must scale the effects and use a dimensionless sensitivity measure. We propose to scale by $c_i = max(X_i) - c_i$ $min(X_i)$ and use the scaled & normalized median of absolute effects $S_{\gamma}(i,j)$.
- Our results on ranking inputs (Fig. 5) suggest 'standard' R_d radial is the best sampling strategy for EE. Both Fig. 4 and Fig. 5 imply OT and 'pinned' methods are not advisable.

Further research

Incorporate standard deviation of effects (non-linearity/interactions);