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Introduction

Elementary effects is a popular choice for sensitivity analysis
In the environmental and biological sciences, but the current
formulation is not suitable for most real-life models. Furthermore, 1

It Is not clear which of the commonly used trajectory generation \
methods is best. . s >
Traditional EE i
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Problems with traditional EE e i
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X

* Real-life models are dimensional & X; & [0,1];
|:- Sensitivity measures depend on input dimensions;
This can lead to erroneous ranking results.

« Current trajectory generation methods are not compatible with integer/Boolean
Inputs.

Methods

Scaling effects

« Essential to ensure results are in line with notion of sensitivity (relative contribution
of input variability to total variance in output); must be function of input range;

- We propose: EEj; = ee;; - ¢;; where ¢; = max(X;) — min(X;).

« Drawback: min(X;), max(X;) are typically uncertain.

Fig. 1: Traditional winding design.

Identify (un)important inputs

1. Sensitivity measure: dimensionless & normalized median (y) of absolute effects
(based on [1,2]): S,(i,)) = =L~

7 )
21=1 X1j Cl

2. Sort: Sy(iy,) < Sy(iy,j) < < Sx(iq,j)j < < S, (g )
3. Unimportant = {Xil,Xl-z,

4. Important = X; for which S,,(i,j) > u(So) + 30(Sp), where Sy = {S, (i1, ),--., Sy (iq.4)}
»

,Xl-q} (g follows from threshold set by modeller);
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Input parameter index
Fig. 2: Given some threshold, unimportant: left of vertical line (teal shader);

important: above horizontal line (orange shader).
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Trajectory generation methods

 Compared: Optimized Trajectories (OT), Sobol QR radial & winding stairs, and
novel R; QR radial & winding; X;

R, sequence {x,}, in d dimensions [3]:
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Trajectory generation for integer/Boolean inputs

* QR sequences give non-integer input values. To ensure Fig. 3: Radial design.

iInteger/Boolean values, we propose the following version of QR sampling designs:

‘Standard’: double inputs = use QR sequence; integer/Boolean = transform
QR base point to one of p; discrete values and use fixed step size |§;| for
perturbed point, where p; satisfies: max(X;) — min(X;) = m(p; — 1) for some
m € N and |§;| Is a multiple of 1/(p;—1).

 As an efficient alternative to OT, we also considered:

‘Pinned’: all inputs - transform QR base point to one of p; discrete values and
use fixed step size |6;|.

Results

Experiment 1: estimating Sobol total sensitivity indices St, (Fig. 4)

Extended experiment in [4] for K- and G*-functions (included higher dimensions
& more sampling approaches); compared radial vs. winding sampling designs.

We found:
« Small step sizes (‘standard’) better than large step sizes (‘pinned’);

« Radial equal or better than winding, but difference not significant in K-function.

—Sob. rad. as in [4] 'Standard' Sob. rad. —'Standard' Rd rad.
'Pinned' Sob. rad. -- Sob. wind. as in [4] 'Standard’' Sob. wind.
--'Standard' Rd wind.
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Fig. 4: Mean absolute error MAE = Jlk 221251 187, — Sr,|. Full lines show radial designs,

dotted lines show winding designs. Left: MAE for ‘Pinned’ Sob. rad. was larger than plot range
shown here. Right: mean +1 std is shown over 5 calculations of MAE.

Experiment 2: ranking parameters using Elementary Effects (Fig. 5)

Kendall T — a correlation between analytical and estimated rankings. Estimated
rankings based on S, (i, ). Included OT wherever computationally feasible.

We found:
« ‘Standard’ R, radial overall top performer, slightly outperforming ‘standard’ Sobol
radial.

« For more complex output functions, #trajectories = 20 beneficial;

'Standard' Sob. rad. (x) —OT (M=1000; x) 'Standard' Sob. wind. (x)
—'Standard' Rd rad. (x)

—'Pinned' Sob. rad. (¥)
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Fig. 5: Lines depict the mean over 50 calculations of the Kendall correlation coefficient. Uniqueness of
replicates was ensured by taking different sections of the QR sequence (K- and f-functions) or by
randomly sampling the 6-parameter in the G*-function (as in [4]). Note: different vertical axis ranges.

Conclusion

To apply EE to a typical real-life - thus dimensional - model one must scale the effects
and use a dimensionless sensitivity measure. We propose to scale by ¢; = max(X;) —
min(X;) and use the scaled & normalized median of absolute effects S, (i, j).

Our results on ranking inputs (Fig. 5) suggest ‘standard’ R; radial is the best sampling
strategy for EE. Both Fig. 4 and Fig. 5 imply OT and ‘pinned’ methods are not advisable.

Further research

* Incorporate standard deviation of effects (non-linearity/interactions);

« Spread and discrepancy of sampled simulation points are poor proxies of
performance (not shown here);
- What characteristic should sampling designs be based on?

* Adapt method to deal with inherent randomness in model.
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