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Contribution: RSA with dependent inputs as RA byproduct
Reliability sensitivity analysis (RSA) with dependent inputs is largely unexplored. We demonstrate how to
efficiently compute the indices of [3] for reliability targets as byproduct of a single reliability analysis (RA).

Reliability analysis
The failure probability of a model with input a ran-
dom vector(RV) X ∈ X ⊆ Rd, distribution X ∼ fX
and limit-state function (LSF) g : X → R is

P(F) =

∫
X

I[g(x) ≤ 0]fX(x)dx = E[I[g(X) ≤ 0]].

(1)
By convention, we choose the LSF to describe fail-
ure as g(x) ≤ 0, hence the integral over fX cen-
sored on the failure domain F = {x : g(x) ≤ 0}
yields the failure probability. Given an isoprobabilis-
tic transformation T : X → Rd with U = T (X) and
U ∼ N (0, I) (standard-normal RV), the reliability
problems reads (ϕ is the standard-normal PDF)

P(F) =

∫
Rd

I[g(T−1(u)) ≤ 0]ϕ(u)du. (2)

Method
We generate a single set of failure samples X using a sample-based RA method. We then use each of the
transformed independent sample sets {U{i}}di=1 to estimate (similar for the total Sobol’ indices):

Si,ind =
V[P[F |U{i+1}

i ]]

V[I[g(X) ≤ 0]]
, Si =

V[P[F |U{i}i ]]

V[I[g(X) ≤ 0]]
. (3)
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Outlook

Our approach can be easily adpated to compute
first-order independent and full indices of model
output by using order statistics of the independent
back-transformed output samplef or each transfor-
mation T {i} to computing E[Y |U{1}i ].

Variance-based RSA
Variance-based sensitivity analysis (SA) of model
output (Model M : X → Y with Y = M(X)) at-
tributes fractions of the output variance V[Y ] to the
input variables {Xi}di=1. After normalization with
V[Y ] we obtain first-order Sobol’ indices as

Si =
V[E[Y |Xi]]

V[Y ]
, STi = 1− V[E[Y |X∼i]]

V[Y ]
. (4)

M = I[g(X) ≤ 0] yields reliability-oriented indices:

Si =
V[E[I[g(X) ≤ 0]|Xi]]

V[I[g(X) ≤ 0]]

(1)
=

V[P(F|Xi)]

V[I[g(X) ≤ 0]]
(5)

for the Sobol’ and likewise for the total Sobol’ index.
We can compute P(F|Xi) using Bayes’ rule:

P(F|Xi) =
fXi(xi|F)P(F)

fXi
(xi)

. (6)

With sample-based RA methods (Monte Carlo, im-
portance sampling, subset simulation), we get P(F)
along with failure samples. These can be used to
estimate fXi(xi|F) with kernel densities (KDE) [2].

Example application

We analyze the following LSF with P(F) = 6.2 · 10−3:

g(X) = X3
1 + 10X2

2 + 0.1 sin(πX2) + 10X2
3 + 40 sin(πX3) + 38, where X ∼ N
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We use failure samples from subset simulation (SUS) runs with n = 104 samples per level (3 levels) and
compare with [1] & [3] each using n = 106 independent samples. Statistics are based on 100 repeated runs.

Figure 1 (left): mean estimates
(bar plot) ±σ (black brackets).

Table 1: Computational cost.

Method LSF calls
Mara et al. 12 · 106

Kucherenko 3 · 106

Failure samples 0.03 · 106

Dependent inputs
For dependent inputs X, variance contributions
stemming from M and fX are difficult to discern.
A possible path forward is to transform the problem
to an independent probability space.

• Variance contributions can be discerned by
considering different transformations T from
X to standard-normal space.

• T is non-unique → sensitivity metrics depend
on the choice of T .

• Suppose, T has a hierarchical structure (e.g.,
the Nataf or the Rosenblatt transform):
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• [3] consider all d cyclic left shifts of the ordered
set {X1, . . . , Xd} (they use T−1 instead of T ):

X1

X2

X3

U
{1}
1

U
{1}
2

U
{1}
3

U
{2}
2

U
{2}
3

U
{2}
1

U
{3}
3

U
{3}
1

U
{3}
2

T {3}
T {2}

T {1}

• Under T {i}, Xi−1 (X0 , Xd) affects only U
{i}
i−1

and Xi affects all of U{i}, hence one defines

⇒ Si,ind =
V[E[Y |U{i+1}

i ]]

V[Y ] , Si =
V[E[Y |U{i}

i ]]

V[Y ] .

• [3] use pick-freeze estimators in d repeated
SA runs to obtain all independent and full
Sobol’/total Sobol’ indices.

• With n independent samples per SA run this
requires a total of nd(d+ 1) model calls.


