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CONTRIBUTION: RSA WITH DEPENDENT INPUTS AS RA BYPRODUCT METHOD

Reliability sensitivity analysis (RSA) with dependent inputs is largely unexplored. We demonstrate how to RIRACEASIEENARM Tl CRCTC A0 i kR IbINE samples X using a sample-based RA method. We then use each of the
efficiently compute the indices of [3| for reliability targets as byproduct of a single reliability analysis (RA). transformed independent sample sets {U1}2 | to estimate (similar for the total Sobol’ indices):

RELIABILITY ANALYSIS

The tailure probability of a model with input a ran-
dom vector(RV) X € X C RY, distribution X ~ fx

and limit-state function (LSF) g : X — R is

P(F) = /X 1lg(x) < 0)fx ()dz = E[I[g(X) < 0]].
(1)

By convention, we choose the LSF to describe fail-
ure as g(x) < 0, hence the integral over fx cen-
sored on the failure domain F = {x : g(x) < 0}

yields the failure probability. Given an isoprobabilis-
tic transformation 7' : X — R? with U = T'(X) and

U ~ N(0,I) (standard-normal RV), the reliability
problems reads (¢ is the standard-normal PDF')

BF) = [ 1T ) < Op(udu. (2)

VARIANCE-BASED RSA

Variance-based sensitivity analysis (SA) of model
output (Model M : X — Y with Y = M(X)) at-
tributes fractions of the output variance V|Y| to the
input variables {X;}¢ ,. After normalization with
VY| we obtain first-order Sobol’ indices as

VIEY|X;]]
vyl

VIEY | X ;]

S; = ST, = 1

o _ VE[[g(X) <0)|X:]] @) V[P(F|X;) (5)
: V[I[g(X) < 0]] V[I[g(X) < 0]

for the Sobol’ and likewise for the total Sobol’ index.
We can compute P(F|X;) using Bayes’ rule:

fx: ()

With sample-based RA methods (Monte Carlo, im-

portance sampling, subset simulation), we get P(F')

along with failure samples. These can be used to
estimate fx, (x;|F) with kernel densities (KDE) |2].
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For dependent inputs X, variance contributions
stemming from M and fx are difficult to discern.
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e Variance contributions can be discerned by

considering different transformations 7' from Failure Samples Failure samples
X to standard-normal space. (original space) independent spaces
e [’ is non-unique — sensitivity metrics depend el (1} (2} (3}
on the choice of T'. e R U U U
e Suppose, T has a hierarchical structure (e.g., I 4
the Nataf or the Rosenblatt transform): | —7(3}
vl hy' (X0) '
i) Ui | Py (X, Xita) EXAMPLE APPLICATION
3 | ' We analyze the following LSF with P(F) = 6.2 - 107°: S _
_Uz{—Z]i_ _h;{iz}(Xia X’H-l? R 7X’i—1)_ 0 1 0.0 0.5
| g(X) =X} +10X5 + 0.1sin(7X5) + 10X3 + 40sin(7X3) + 38, where X ~ A | |0], (0.5 1 0.8
e 3| consider all d cyclic left shifts of the ordered 0f (03 08 1

set {X1,..., X4} (they use T—! instead of T'):
We use failure samples from subset simulation (SUS) runs with n = 10* samples per level (3 levels) and

compare with [1] & [3] each using n = 10° independent samples. Statistics are based on 100 repeated runs.
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