Proportional marginal effects FOR SENSITIVITY ANALYSIS WITH CORRELATED INPUTS

Margot Herin ${ }^{1,4}$, Marouane IL Idrissi ${ }^{1,2,3}$, Bertrand looss ${ }^{1,2,3}$, Vincent Chabridon ${ }^{1,3}$
${ }^{1}$ Electricité de France R\&D
${ }^{2}$ Institut de Mathématiques de Toulouse
${ }^{3}$ SINCLAIR AI Lab
${ }^{4}$ Sorbonne Université (LIP6)

SAMO Conference
March, 14-16 ${ }^{\text {th }}, 2022$

1. Background

2. PME

3. Estimation and application
4. Background
5. PME
6. Estimation and application

GSA FRAMEWORK - NOTATIONS

- Inputs: $X=\left(X_{1}, \ldots, X_{d}\right)$ real-valued random vector of joint probability measure P_{X} and marginal probability measures $P_{X_{i}}$;
- Model: $G:\left\{\begin{array}{l}\mathbb{R}^{d} \longrightarrow \mathbb{R} \\ X \longmapsto G(X)\end{array} \quad, \quad G \in \mathbb{L}^{2}\left(P_{X}\right)\right.$;
- Output: $Y=G(X)$.

$$
\mathcal{P}_{d}=\mathcal{P}(\{1, \ldots, d\}) .
$$

$\forall u \in \mathcal{P}_{d}, \quad X_{u}=\left(X_{i}\right)_{i \in u}$.

SOBOL' INDICES

Sobol' Indices (Sobol 1990)

$$
\forall A \in \mathcal{P}_{d}, \quad S_{A}=\frac{\sum_{B \subset A}(-1)^{|A|-|B| \mathbb{V}\left(\mathbb{E}\left[G(X) \mid X_{B}\right]\right)}}{\mathbb{V}(G(X))}
$$

Under independence assumption ($P_{X}=\prod_{i} P_{X_{i}}$), S_{A} represents a variance share:

$$
\left\{\begin{array}{l}
\mathrm{S}_{A} \geq 0, \quad \forall A \in \mathcal{P}_{d} \\
\sum_{A \in \mathcal{P}_{d}} S_{A}=1
\end{array}\right.
$$

Not true in the general case!
The Sobol' indices can be negative and thus do not consist in a variance decomposition anymore.

SHAPLEY EFFECTS: COOPERATIVE GAME SOLUTION

A cooperative game (D, v) consists of:

- A set of players $D=\{1, \ldots, d\}$;
- A value function $v: \mathcal{P}_{d} \rightarrow \mathbb{R}^{+}$s.t. $v(\emptyset)=0$. hyp : $\forall A_{1}, A_{2} \in \mathcal{P}_{d}$ s.t. $A_{1} \subseteq A_{2}, \quad v\left(A_{1}\right) \leq v\left(A_{2}\right)$.

An allocation rule is a real-valued function ϕ that associates to any cooperative game (D, v) a real valued vector $(\phi)_{i=1, \ldots, d}$.

Shapley values (Shapley 1951)

For all cooperative game (D, v), for all $i \in D$:

$$
\operatorname{Shap}_{i}((D, v))=\sum_{A \subseteq D \backslash\{i\}} \frac{(d-|A|-1)!|A|!}{d!}(v(A \cup\{i\})-v(A)) .
$$

Shapley effects (Owen 2014) (Song, Nelson, and Staum 2016)

$$
\forall i \in D, \operatorname{Sh}_{i}=\operatorname{Shap}_{i}\left(\left(D, S^{T}\right)\right) \text { where } \forall A \in \mathcal{P}_{d}, S_{A}^{T}=\frac{\mathbb{E}\left[\mathbb{V}\left(G(X) \mid X_{\bar{A}}\right)\right]}{\mathbb{V}(G(X))}
$$

SHAPLEY EFFECTS: COOPERATIVE GAME SOLUTION

$\left\{\sum_{i} \mathrm{Sh}_{i}=1 \quad\right.$ (Efficiency property)
 $\forall i \in D, \quad \mathrm{Sh}_{i} \geq 0$

$$
\Downarrow
$$

- variance decomposition in the correlated case;
- input ranking according output variance contribution;
- factor fixing:

$$
S h_{i}=0 \Rightarrow \forall A \subseteq D \backslash\{i\}, S_{A \cup\{i\}}^{T}-S_{A}^{T}=0 .
$$

$\Rightarrow X_{i}$ does not contribute to output variance.

PB: partial factor fixing since an exogenous variable can get non zero Shapley effect.

Shapley's joke example

(looss and Prieur 2019)

$$
\begin{aligned}
& Y=G(X)=X_{1} \\
& \left(X_{1}, X_{2}\right) \sim \mathcal{N}\left(\binom{0}{0},\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)\right)
\end{aligned}
$$

$$
\mathrm{Sh}_{1}=1-\frac{\rho^{2}}{2}
$$

$$
\mathrm{Sh}_{2}=\frac{\rho^{2}}{2}
$$

1. Background

2. PME

3. Estimation and application

DEFINITION

Marginal proportional values (PMV) (Feldman 2005)

For all cooperative game (D, v) with v valued in \mathbb{R}^{+*} (extension to \mathbb{R}^{+}provided in this work)

$$
\mathrm{PV}_{i}((D, v))=\frac{R(D, v)}{R(D \backslash\{i\}, v)}
$$

where R is defined recursively by:

$$
\forall A \in \mathcal{P}(D), \quad R(A, v)=v(A)\left(\sum_{j \in A} \frac{1}{R(A \backslash\{j\}, v)}\right)^{-1} \quad \text { and } \quad R(\emptyset, v)=1
$$

Proportional Marginal Effects (PME)

$$
\forall i \in D, \mathrm{PME}_{i}=\mathrm{PV}_{i}\left(\left(D, S^{T}\right)\right)
$$

$$
\left\{\begin{array}{l}
\sum_{i} \mathrm{PME}_{i}=1 \quad(\text { Efficiency property }) \\
\forall i \in D, \quad \mathrm{PME}_{i} \geq 0
\end{array} \Rightarrow\right.
$$

PME = Shapley effects alternative to provide variance decomposition with correlated input.

AXIOMATIC: INTERACTION REPARTITION

Balanced contribution property

$$
\forall i, j \in D, \mathrm{Sh}_{i}-\mathrm{Sh}_{i,-j}=\mathrm{Sh}_{j}-\mathrm{Sh}_{j,-i}
$$

Equal proportional gain property

$$
\forall i, j \in D, \quad \frac{\mathrm{PME}_{i}}{\mathrm{PME}_{i,-j}}=\frac{\mathrm{PME}_{j}}{\mathrm{PME}_{j,-i}}
$$

where $\phi_{i,-j}$ refer to the variance share of X_{i} without including the variance due to the interaction with X_{j}.
Illustration for $D=\{1,2\}: \quad \forall i \in D, \quad D=\{i, \bar{i}\}, \quad \phi_{i,-\bar{i}}=S_{i}^{T}$ (individual value)

$$
\begin{aligned}
& \Pi=\frac{\mathrm{PME}_{i}}{\mathrm{PME}_{i,-\bar{i}}}=\frac{1}{S_{1}^{T}+S_{2}^{T}} \\
& \sum=S h_{i}-S h_{i,-\bar{i}}=\frac{1}{2}\left(1-S_{1}^{T}-S_{2}^{T}\right)
\end{aligned} \Rightarrow \begin{aligned}
& \mathrm{PME}_{i}=\prod \cdot S_{i}^{T}=S_{i}^{T}+\frac{S_{i}^{T}}{S_{1}^{T}+S_{2}^{T}}\left(1-S_{1}^{T}-S_{2}^{T}\right) \\
&
\end{aligned}
$$

Figure 1: Schematic illustration of the interaction distribution (left: Shapley effects/ right: PME).

CONSEQUENCE : ROBUSTNESS TO CORRELATION (EXAMPLE I)

Shapley's joke example

$$
\begin{array}{ll}
Y=X_{1} \\
\left(X_{1}, X_{2}\right) \sim \mathcal{N}
\end{array}\left(\binom{0}{0},\left(\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array}\right)\right) \quad S_{1}^{T}>0, S h_{1}=1-\frac{\rho^{2}}{2}, \quad P M E_{1}=1 .
$$

Proposition

Suppose that there exists a subset of endogenous variable $D^{*} \subseteq D$ of size d^{*} such that $\forall i \in D^{*}, S_{i}^{T}>0$ and such that one can find a measurable function f that verifies $Y=G(X)=f\left(X_{D^{*}}\right)$. Then:

$$
\forall i \notin D^{*}, \quad P M E_{i}=0 .
$$

CONSEQUENCE : ROBUSTNESS TO CORRELATION (EXAMPLE II)

Linear gaussian case:

$$
\begin{aligned}
& Y=X_{1}+\beta_{2} X_{2}+X_{3} \\
& \left(X_{1}, X_{2}, X_{3}\right) \sim \mathcal{N}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & \rho \\
0 & \rho & 1
\end{array}\right)\right)
\end{aligned}
$$

$$
S h_{1}=P M E_{1} \xrightarrow[\rho \rightarrow 1]{\longrightarrow} \quad \frac{1}{2+\beta_{2}^{2}+2 \beta_{2}} \quad \underset{\beta_{2} \gg 1}{\sim} 0
$$

$$
S h_{2}, S h_{3} \underset{\rho \rightarrow 1}{ } \quad \frac{\frac{1}{2} \beta_{2}^{2}+\beta_{2}+\frac{1}{2}}{2+\beta^{2}+2 \beta_{2}} \quad \underset{\beta_{2} \gg 1}{\sim} \frac{1}{2}
$$

$$
\begin{aligned}
& P M E_{2} \underset{\rho \rightarrow 1}{ } \frac{\beta_{2}^{2}\left(1+\beta_{2}^{2}+2 \beta_{2}\right)}{\left(2+\beta^{2}+2 \beta_{2}\right)\left(1+\beta_{2}^{2}\right)} \\
& \beta_{2} \gg 1 \\
& P M E_{3} \xrightarrow[\rho \rightarrow 1]{ } \frac{\left(1+\beta_{2}^{2}+2 \beta_{2}\right)}{\left(2+\beta^{2}+2 \beta_{2}\right)\left(1+\beta_{2}^{2}\right)}
\end{aligned} \underset{\beta_{2} \gg 1}{\sim} 0 .
$$

Figure 2: Shapley effects and PME indices w.r.t to ρ 11/20 for $\beta_{2}=10$. Input X_{1}, X_{2}, X_{3} from up to down.

1. Background

2. PME

3. Estimation and application

ESTIMATION

2-step estimation procedure (similar to the Shapley effects estimation):

- Estimation of the conditional elements $S_{A}^{T}, \forall A \in \mathcal{P}_{\mathcal{D}}$:
- Monte Carlo estimation (Song, Nelson, and Staum 2016);
- Data-given estimation using a nearest-neighbor procedure (Broto, Bachoc, and Depecker 2020).
- Aggregation procedure by plugging-in the estimated conditional elements in the PME recursive formula.
\longrightarrow package sensitivity in R

APPLICATION A TO REALISTIC MODEL

Robot arm model (An and Owen 2001)

- inputs: angles $\left(A_{i}\right)$ and lengts $\left(L_{i}\right)$ of 4 segments of the arm;
- output : extension of the arm
$Y=\left\{\left[\sum_{i=1}^{4} L_{i} \cos \left(\sum_{j=1}^{i} A_{j}\right)\right]^{2}+\left[\sum_{i=1}^{4} L_{i} \sin \left(\sum_{j=1}^{j} A_{j}\right)\right]^{2}\right\}^{1 / 2}$
- The inputs are artificially correlated:
- $\forall A_{i} \sim \mathcal{U}[0,2 \pi]$, pairwise correlated with Gaussian copula with a 95% correlation coeff;
- $L_{1} \sim \mathcal{U}[0,1], \forall i>1, L_{i} \sim \mathcal{U}\left[0, L_{i-1}\right]$

Figure 3: Pair plots of a 2000-size Monte Carlo sample for the robot arm model.

APPLICATION A TO REALISTIC MODEL

Shapley effects estimation by nearest-neighbor procedure

Proportional marginal effects estimation by nearest-neighbor procedur

Figure 4: Shapley effects (left) and PME (right) for the robot arm model.

CONCLUSION

PME indices allow for another variance decomposition in the correlated case with new properties:

- Equal proportional gain : interaction is shared proportionaly to individual power. The three following points can be seen as valuable consequences of this property.
- Robustness to correlation when interaction = correlation;
- No Shapley's joke: an exogenous input always get zero \% variance share, even if it is correlated to endogenous variable;
- Strong discrimination between inputs.

Figure 5: Schematic illustration of PME (right) and Sh (left) indices for $\mathrm{d}=3$.

PERSPECTIVES

- Finite sample properties of the estimator?
- A PME equivalent of the Shapley-Owen indices (Rabitti and Borgonovo 2019) (Shapley effects quantifying group importance)?

REFERENCES

An, J., and A.B. Owen. 2001. "Quasi-regression." Journal of Complexity 17 (588-607).

Broto, B., F. Bachoc, and M. Depecker. 2020. "Variance reduction for estimation of Shapley effects and adaptation to unknown input distribution." SIAM/ASA Journal on Uncertainty Quantification 8:693-716.

Da Veiga, S., F. Gamboa, B. looss, and C. Prieur. 2021. Basics and Trends in Sensitivity Analysis. Theory and Practice in R. SIAM.
Feldman, Barry E. 2005. "Relative importance and value." Available at SSRN 2255827.
looss, B., and C. Prieur. 2019. "Shapley effects for Sensitivity Analysis with correlated inputs : Comparisons with Sobol' Indices, Numerical Estimation and Applications." International Journal for Uncertainty Quantification 9 (5): 493-514. IsSN: 2152-5080. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2019028372.

Owen, A. B. 2014. "Sobol' Indices and Shapley Value" [in English]. SIAM/ASA Journal on Uncertainty Quantification 2, no. 1 (January): 245-251. ISSN: 2166-2525, accessed December 2, 2020. https://doi.org/10.1137/130936233.

Rabitti, G., and E. Borgonovo. 2019. "A Shapley-Owen Index for Interaction Quantification." SIAM/ASA Journal on Uncertainty Quantification 7, no. 3 (January): 1060-1075. ISSN: 2166-2525. https://doi.org/10.1137/18M1221801. https://epubs.siam.org/doi/10.1137/18M1221801.

Shapley, L. S. 1951. Notes on the n-Person Game - II: The Value of an n-Person Game [in English]. Research Memorandum ATI 210720. Santa Monica, California: RAND Corporation, August.
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM670.pdf.
Sobol, I M. 1990. "On sensitivity estimation for nonlinear mathematical models" [in Russian].
Mathematical Modelling and Computational Experiments 2 (1): 112-118.
Song, E., B.L. Nelson, and J. Staum. 2016. "Shapley effects for global sensitivity analysis: Theory and computation."

SUPPLEMENTARY MATERIAL

Proportional values extension

$\forall i \in D, \widetilde{P V}_{i}((D, v))=\left\{\begin{array}{l}\sum_{\substack{S \subset D_{-i} \\|S|=k_{M} \\ v(S)=0}} R\left(D_{-i} \backslash S, v_{S}\right)^{-1} \\ \sum_{\substack{S \subset D \\ S \mid=k_{M} \\ v(S)=0}} R\left(D \backslash S, v_{S}\right)^{-1}\end{array}\right.$ if $\exists S \subseteq D_{-i} s . t|S|=k_{M}, v(S)=0$,
where k_{M} is the size of the largest null coalition, i.e., $k_{M}=k_{M}((D, v))=\max _{T \subseteq D}\{|T| \mid v(T)=0\}$

SUPPLEMENTARY MATERIAL

Allocation reduce game:

$$
\phi_{i,-j}=\phi_{i}(D \backslash\{j\}, v), \quad \sum_{i \neq j} \phi_{i,-j}=v(D \backslash\{j\})
$$

