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2Institut de Mathématiques de Toulouse

3SINCLAIR AI Lab
4Sorbonne Université (LIP6)
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GSA FRAMEWORK - NOTATIONS

• Inputs: X = (X1, ...,Xd) real-valued random vector of joint probability measure PX and

marginal probability measures PXi ;

• Model: G :

Rd −→ R

X 7−→ G(X )
, G ∈ L2(PX );

• Output: Y = G(X ).

Pd = P({1, ..., d}).

∀u ∈ Pd , Xu = (Xi )i∈u.
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SOBOL’ INDICES

Sobol’ Indices (Sobol 1990)

∀A ∈ Pd , SA =
∑

B⊂A(−1)|A|−|B|V(E[G(X )|XB ])

V(G(X ))

Under independence assumption ( PX =
∏

i PXi ), SA

represents a variance share:


SA ≥ 0, ∀A ∈ Pd .∑
A∈Pd

SA = 1.

Not true in the general case!

The Sobol’ indices can be negative and thus do not consist in a variance decomposition

anymore.

(Da Veiga et al. 2021)
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SHAPLEY EFFECTS: COOPERATIVE GAME SOLUTION

A cooperative game (D, v) consists of:

• A set of players D = {1, ..., d} ;

• A value function v : Pd → R+
s.t. v(∅) = 0.

hyp : ∀A1,A2 ∈ Pd s.t. A1 ⊆ A2, v(A1) ≤ v(A2).

An allocation rule is a real-valued

function ϕ that associates to any

cooperative game (D, v) a real valued

vector (ϕ)i=1,...,d .

Shapley values (Shapley 1951)

For all cooperative game (D, v), for all i ∈ D:

Shapi

(
(D, v)

)
=

∑
A⊆D\{i}

(d − |A| − 1)!|A|!
d!

(
v(A ∪ {i})− v(A)

)
.

Shapley effects (Owen 2014) (Song, Nelson, and Staum 2016)

∀i ∈ D, Shi = Shapi

(
(D, ST )

)
where ∀A ∈ Pd , ST

A =
E[V(G(X )|XĀ)]

V(G(X )) .
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SHAPLEY EFFECTS: COOPERATIVE GAME SOLUTION


∑

i Shi = 1 (Efficiency property)

∀i ∈ D, Shi ≥ 0

⇓
• variance decomposition in the correlated case;

• input ranking according output variance

contribution;

• factor fixing:

Shi = 0 ⇒ ∀A ⊆ D\{i}, ST
A∪{i} − ST

A = 0.

⇒ Xi does not contribute to output variance.

PB: partial factor fixing since an exogenous

variable can get non zero Shapley effect.

Shapley’s joke example
(Iooss and Prieur 2019)

Y = G (X ) = X1

(X1,X2) ∼ N

((
0

0

)
,

(
1 ρ

ρ 1

))

Sh1 = 1− ρ2

2

Sh2 =
ρ2

2
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DEFINITION

Marginal proportional values (PMV) (Feldman 2005)

For all cooperative game (D, v) with v valued in R+∗
(extension to R+

provided in this work)

PVi ((D, v)) =
R(D, v)

R(D \ {i}, v)

where R is defined recursively by:

∀A ∈ P(D), R(A, v) = v(A)

∑
j∈A

1

R(A \ {j}, v)

−1

and R(∅, v) = 1

.

Proportional Marginal Effects (PME)

∀i ∈ D, PMEi = PVi

(
(D,ST )

)

∑

i PMEi = 1 (Efficiency property)

∀i ∈ D, PMEi ≥ 0
⇒

PME = Shapley effects alternative to

provide variance decomposition with

correlated input.
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AXIOMATIC: INTERACTION REPARTITION

Balanced contribution property

∀i , j ∈ D, Shi − Shi,−j = Shj − Shj,−i

Equal proportional gain property

∀i , j ∈ D, PMEi
PMEi,−j

=
PMEj

PMEj,−i

where ϕi,−j refer to the variance share of Xi without including the variance due to the interaction with Xj .

Illustration for D = {1, 2}: ∀i ∈ D, D = {i , ī}, ϕi,−ī = ST
i (individual value)

∏
=

PMEi

PMEi,−ī

=
1

ST
1 + ST

2∑
= Shi − Shi,−ī =

1

2
(1− ST

1 − ST
2 )

⇒ PMEi =
∏

.ST
i = ST

i +
ST
i

ST
1 + ST

2

(1− ST
1 − ST

2 )

Shi =
∑

+ST
i = ST

i +
1

2
(1− ST

1 − ST
2 )

Figure 1: Schematic illustration of the interaction distribution (left: Shapley effects/ right : PME).
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CONSEQUENCE : ROBUSTNESS TO CORRELATION ( EXAMPLE I )

Shapley’s joke example

Y = X1

(X1,X2) ∼ N
((

0

0

)
,

(
1 ρ

ρ 1

)) ST
1 > 0, Sh1 = 1− ρ2

2
, PME1 = 1.

ST
2 = 0, Sh2 =

ρ2

2
, PME2 = 0.

Proposition

Suppose that there exists a subset of endogenous variable D∗ ⊆ D of size d∗
such that

∀i ∈ D∗, ST
i > 0 and such that one can find a measurable function f that verifies

Y = G(X ) = f (XD∗). Then:

∀i ̸∈ D∗, PMEi = 0.
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CONSEQUENCE : ROBUSTNESS TO CORRELATION ( EXAMPLE II )

Linear gaussian case:
Y = X1 + β2X2 + X3

(X1,X2,X3) ∼ N


 0

0

0

 ,

 1 0 0

0 1 ρ

0 ρ 1




Sh1 = PME1 −−−→
ρ→1

1

2 + β2
2 + 2β2

∼
β2>>1

0

Sh2, Sh3 −−−→
ρ→1

1
2
β2
2 + β2 +

1
2

2 + β2 + 2β2
∼

β2>>1

1

2

PME2 −−−→
ρ→1

β2
2(1 + β2

2 + 2β2)

(2 + β2 + 2β2)(1 + β2
2)

∼
β2>>1

1

PME3 −−−→
ρ→1

(1 + β2
2 + 2β2)

(2 + β2 + 2β2)(1 + β2
2)

∼
β2>>1

0

Figure 2: Shapley effects and PME indices w.r.t to ρ

for β2 = 10. Input X1,X2,X3 from up to down.
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ESTIMATION

2-step estimation procedure (similar to the Shapley effects estimation):

• Estimation of the conditional elements ST
A ,∀A ∈ PD:

- Monte Carlo estimation (Song, Nelson, and Staum 2016);

- Data-given estimation using a nearest-neighbor procedure (Broto, Bachoc, and

Depecker 2020).

• Aggregation procedure by plugging-in the estimated conditional elements in the PME

recursive formula.

−→ package sensitivity in R
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APPLICATION A TO REALISTIC MODEL

Robot arm model (An and Owen 2001)

• inputs: angles (Ai ) and lengts (Li ) of

4 segments of the arm;

• output : extension of the arm

Y =

{[∑4
i=1 Li cos

(∑i
j=1 Aj

)]2
+

[∑4
i=1 Li sin

(∑i
j=1 Aj

)]2}1/2

• The inputs are artificially correlated:

- ∀Ai ∼ U [0, 2π], pairwise correlated

with Gaussian copula with a 95%

correlation coeff;

- L1 ∼ U [0, 1], ∀i > 1, Li ∼ U [0, Li−1]
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Figure 3: Pair plots of a 2000-size Monte Carlo

sample for the robot arm model.
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APPLICATION A TO REALISTIC MODEL
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Figure 4: Shapley effects (left) and PME (right) for the robot arm model.
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CONCLUSION

PME indices allow for another variance decomposition in the correlated case with new properties:
• Equal proportional gain : interaction is shared proportionaly to individual power. The

three following points can be seen as valuable consequences of this property.
• Robustness to correlation when interaction = correlation;
• No Shapley’s joke: an exogenous input always get zero % variance share, even if it is

correlated to endogenous variable;
• Strong discrimination between inputs.

Figure 5: Schematic illustration of PME

(right) and Sh (left) indices for d = 3.
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PERSPECTIVES

• Finite sample properties of the estimator?

• A PME equivalent of the Shapley-Owen indices (Rabitti and Borgonovo

2019) (Shapley effects quantifying group importance)?
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SUPPLEMENTARY MATERIAL

Proportional values extension

∀i ∈ D, P̃Vi ((D, v)) =



∑
S⊂D−i

|S|=kM
v(S)=0

R(D−i\S , vS)−1

∑
S⊂D

|S|=kM
v(S)=0

R(D\S , vS)−1
if ∃S ⊆ D−i s.t |S | = kM , v(S) = 0,

0 else,

where kM is the size of the largest null coalition, i.e., kM = kM((D, v)) = max
T⊆D

{
|T |

∣∣v(T ) = 0
}
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SUPPLEMENTARY MATERIAL

Allocation reduce game:

ϕi ,−j = ϕi (D\{j}, v),
∑
i ̸=j

ϕi ,−j = v(D\{j})
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