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Framework

We consider a complicated regression function f defined on
E = E1 × E2 × · · · × Ep and valued in Rk depending on several
variables :

y = f (x1, . . . , xp), (1)

where

1 the inputs xi pour i = 1, . . . p are objects ;

2 f is deterministic and unknown. It is called a black-box.
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Aim

Generally,

1 f is not analytically known ;

2 given (x1, . . . , xp), the computer code gives y = f (x1, . . . , xp) ;

3 computing y = f (x1, . . . , xp) may be costly.

Wishes :

1 evaluate y for any value of the p-uplet (x1, . . . , xp).

2 identify the most important variables to be able to fix the less
important ones to their nominal value.
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Probabilistic frame

In order to quantify the influence of a variable, it is common to
assume that the inputs are random :

X := (X1, . . . ,Xp) ∈ E = E1 × . . .× Ep.

Then f : E → Rk is a measurable function that can be evaluated
on runs and the output code Y becomes random too :

Y = f (X1, . . . ,Xp).

In this presentation, the inputs Xi are assumed to be mutually
independent.
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Probabilistic frame

Main assumptions :

1 X1, . . . ,Xp are independent.

2 E[‖Y ‖2] <∞.

3 Y is scalar (here, for sake of simplicity).

The question is :

How one may quantify the amount of randomness that a variable
or a group of variables bring to Y ?

The simplest indicator of variability of a random variable is the
variance.
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The so-called Sobol’ indices

Classically to quantify the amount of randomness that a variable or
a group of variables bring to Y , one computes the so-called Sobol’
indices.

For instance, the first order Sobol’ index with respect to
Xu = (Xi , i ∈ u) is given by

Su =
Var(E[Y |Xu])

Var(Y )

(assuming Y is scalar).

Such indices stem from the Hoeffding decomposition of the
variance of f (or equivalently Y ) that is assumed to lie in L2.
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Some extensions of the Sobol’ indices

Multidimensional and functional outputs
F. Gamboa, A. Janon, T. Klein, and A. Lagnoux. “Sensitivity
analysis for multidimensional and functional outputs”.
Electron. J. Stat, (2014). Volume 8, no. 1, pp 575–603.

Indices in general metric spaces - GMS indices
F. Gamboa, T. Klein, A. Lagnoux, and L. Moreno. “Sensitivity
analysis in general metric spaces ”, RESS, 2021.

Indices based on the whole distribution - Cramér-von Mises
indices
F. Gamboa, T. Klein, and A. Lagnoux. “Sensitivity analysis
based on Cramér-von Mises distance ”, SIAM UQ, 2018.

Universal indices
J.-C. Fort, T. Klein, and A. Lagnoux. “Global sensitivity
analysis and Wasserstein spaces”, SIAM UQ, 2021.
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Estimation of the Sobol’ indices

1 First approach - the classical Pick-Freeze estimation

2 Second approach - mighty estimation based on ranks
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Pick-Freeze estimation of Sobol’ indices

To fix ideas assume for example p = 5, u = {1, 2} so that
∼ u = {3, 4, 5}.
We consider the Pick-Freeze variable Yu defined as follows :

draw X = (X1,X2,X3,X4,X5),

build Xu = (X1,X2,X
′
3,X

′
4,X

′
5) .

Then, we compute

Y = f (X ),

Yu = f (Xu).

A small miracle

Var(E[Y |Xu]) = Cov(Y ,Yu) so that Su =
Cov (Y ,Yu)

Var(Y )
.
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Pick-Freeze estimation of Sobol’ indices

In practice Generate two N-samples :

one N-sample of X :
(
X i
)
i=1,...,N

,

one N-sample of Xu :
(
X i

u

)
i=1,...,N

.

Compute the code on both samples :

Y i = f (X i )i=1,...,N ,

Y i
u = f (X i

u)i=1,...,N .

Then estimate Su by

Su
N,PF =

1
N

∑
Y iY i

u −
(

1
N

∑
Y i
) (

1
N

∑
Y i

u

)
1
N

∑
(Y i )2 −

(
1
N

∑
Y i
)2
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Pick-Freeze estimation : some statistical questions

Is the Pick-Freeze estimator a“good”estimator of the Sobol’
index ?

Is it consistent ? Response : YES SLLN.

If yes, at which rate of convergence ? Resp. : YES CLT (cv in√
N).

Is it asymptotically efficient ? Resp. : YES.

Is it possible to measure its performance for a fixed N ?
Response : YES Berry-Esseen and concentration inequalities.
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Pick-Freeze estimation : consistency and CLT

Su
N,PF =

1
N

∑
Y iY i

u −
(

1
N

∑
Y i
) (

1
N

∑
Y i

u

)
1
N

∑
(Y i )2 −

(
1
N

∑
Y i
)2 , Su =

Var (E [Y |Xu]))

Var(Y )
.

Theorem (Janon, Klein, Lagnoux, Nodet, Prieur (2015))

1 One has Su
N,PF

a.s.−→
N→∞

Su.

2 If E[Y 4] <∞, then

√
N
(
Su
N,PF − Su

) L→
N→∞

N1

(
0, σ2

S

)
where σ2

S = Var((Y−E[Y ])[(Y u−E[Y ])−Su(Y−E[Y ])])

(Var(Y ))
2 .
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Pick-Freeze estimation : concentration inequality

The Central Limit Theorem is a limit result. In real life, the
number of experiments is finite. Concentration inequalities allow to
quantify the error between the estimate and the index true value
for a fixed value of N.
Using soundly Bennett inequality, one gets

Proposition (Gamboa, Janon, Klein, Lagnoux, Prieur (2015))

Let u be a subset of {1, . . . , p}. Then,

P (|Su
N − Su| > t) 6 2 exp

(
−NVar(Y )2

128

(
1− 1

N

)2( t

3 + 2t

)2
)
.
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Pick-Freeze estimation of Sobol indices

Références

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. “
Asymptotic normality et efficiency of a Sobol index estimator”,
ESAIM P&S, 2013.

F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. “
Statistical Inference for Sobol pick freeze Monte Carlo
method”, Statistics, 2015.
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Drawbacks of the Pick-Freeze estimation

The cost (=number of evaluations of the function f ) of the
estimation of the p first-order Sobol’ indices is quite
expensive : (p + 1)N.

This methodology is based on a particular design of
experiment that may not be available in practice. For
instance, when the practitioner only has access to real data.

⇒ We are then interested in an estimator based on a N-sample
only.
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Mighty estimation based on ranks

Here we assume that the inputs Xi for i = 1, . . . , p are scalar and
we want to estimate the Sobol’ index S1 with respect to X1 :

S1 =
Var (E[Y |X1])

Var(Y )
.

To do so, we consider a N-sample of the input/output pair (X1,Y )
given by

(X1,1,Y1), (X1,2,Y2), . . . , (X1,N ,YN).
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Mighty estimation based on ranks

The pairs (X1,(1),Y(1)), (X1,(2),Y(2)), . . . , (X1,(N),Y(N)) are
rearranged in such a way that

X1,(1) < . . . < X1,(N).

Example

N = 6

Original sample (1, 5), (2, 9), (−2, 3), (6,−4), (0, 8)

Rearranged sample (−2, 3), (0, 8), (1, 5), (2, 9), (6,−4).
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Mighty estimation based on ranks

We introduce

S1
N,Rank =

1
N

∑N−1
i=1 Y(i)Y(i+1) −

(
1
N

∑N
i=1 Yi

)2

1
N

∑N
i=1 Y

2
i −

(
1
N

∑N
i=1 Yi

)2 .

Theorem (Gamboa, Gremaud, Klein, Lagnoux, 2021)

1 One has S1
N,Rank

a.s.−→
N→∞

S1.

2 If the Xi ’s are uniformly distributed and under some mild
assumptions on f , then

√
N
(
S1
N,Rank − S1

) L→
N→∞

N1

(
0, σ2

R

)
.



Intro. Pick-Freeze est. Rank est. Comparison Appl.

Sketch of the proof of the CLT

We consider the estimation of E[E[Y |X1]2] only and its estimation

1

N

N∑
j=1

Y(j)Y(j+1).

For j = 1, . . .N − 1, we note X = X1, W = (X2, . . . ,Xp) and
introduce

∆N,j := f
(
X(j),Wj

)
− f

(
j

N + 1
,Wj

)
, WN,j :=

(
j

N + 1
,Wj

)
.

Then, by a Taylor expansion (allowed by the regularity of f ),

Y(j)Y(j+1) ≈f (WN,j) f (WN,j+1) + ∆N,j f (WN,j+1) + ∆N,j+1f (WN,j).
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Sketch of the proof of the CLT
First part :

BN :=
1

N

N−1∑
j=1

f (WN,j) f (WN,j+1).

We use the CLT for 1-dependent random variables of Orey et al.
(1958) together with

Lemma (Key lemma 1)

There exists a measurable set Π ⊂ ΩW with PW -probability one
such that for any ωW ∈ Π,

1

N

N−2∑
j=1

δ( j−1
N+1

, j
N+1

, j+1
N+1

, j+2
N+1

,Wj−1(ωW ),Wj (ωW ),Wj+1(ωW ))

⇒ L(X ,X ,X ) ⊗ LW ⊗ LW ⊗ LW ,

as N →∞ where as before X is uniformly distributed on [0, 1].
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Sketch of the proof of the CLT

Second part :

CN :=
1

N

N−1∑
j=1

(∆N,j f (WN,j+1) + ∆N,j+1f (WN,j))

≈ 1

N

N−1∑
j=1

(
X(j) −

j

N + 1

)
fx (WN,j) (f (WN,j−1) + f (WN,j+1))

by a Taylor expansion.

We work conditionally to FW the σ-algebra generated by the Wj ’s
and we recall that

WN,j :=

(
j

N + 1
,Wj

)
.
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Sketch of the proof of the CLT

The next lemma is a generalization of the CLT for a L-statistics.

Lemma (Key lemma 2)

Let (U,B(U)) be a Polish space where B(U). Let (χj)16j6n, n∈N∗

valued in U and Q a proba. measure on U × [0, 1] such that

1

N

N−1∑
j=1

δ j
N
,χj
⇒ Q.

Let ψ be a bounded measurable real function on U × [0, 1]. We
assume that the set of discontinuity points of ψ has null
Q-probability. Then,

1√
N

N−1∑
j=1

(
X(j) −

j

N + 1

)
ψ

(
χj ,

j

N

)
L−→

N→∞
N
(
0, s2

ψ

)
.
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Sketch of the proof of the CLT

We use the representation

X(j)
L
=

∑j
i=1 Ei∑N+1
i=1 Ei

, where Ei ∼ E(1) and are independent.

We apply Key lemma 1 with χj = (Wj−1,Wj ,Wj+1) to get

1

n

n−1∑
j=1

δ j−1
n+1

, j
n+1

, j+1
n+1

,χj

⇒ Q = L(X ,X ,X ) ⊗ LW ⊗ LW ⊗ LW

and we conclude applying Key lemma 2.
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Sketch of the proof of the CLT
Finally, we have a CLT for

BN =
1

N

N−1∑
j=1

f (WN,j) f (WN,j+1)

and, conditionnally to FW , a CLT for

CN =
1

N

N−1∑
j=1

(∆N,j f (WN,j+1) + ∆N,j+1f (WN,j))

For any s and t ∈ R,

E
[
e i(
√
Ns(BN−E[BN ])+

√
NtCN)

]
= E

[
e i
√
Ns(Bn−E[BN ])E

[
e i
√
ntCN

∣∣FW

]]
E
[
e i
√
NtCN

∣∣FW

]
→ exp{−σ2

C t
2/2} a.s. not random ;

√
Ns(BN − E[BN ])

L−→
N→∞

N (0, σ2
B).
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Sketch of the proof of the CLT

By Slutsky’s lemma,(√
Ns(BN − E[BN ]),E

[
e i
√
NtCN

∣∣FW

])
L−→

N→∞
(Bs , exp{−σ2

C t
2/2}).

We consider h : (u, v) ∈ R× D(0, 1) 7→ e iuv ∈ C where D(0, 1) is

the unit disc in C : e i
√
Ns(BN−E[BN ])

[
e i
√
NtCN

∣∣FW

]
cv in

distribution.
Finally,

√
N(BN − E[BN ],CN)

L−→
N→∞

N2

(
0,

(
σ2
B 0
0 σ2

C

))
.

We conclude using the delta method.
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Mighty estimation based on ranks

Références

F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. “Global
Sensitivity Analysis : a new generation of mighty estimators
based on rank statistics”, Bernoulli. 2021.

S. Chatterjee. “A new coefficient of Correlation”, JASA, 2020.

S. Da Veiga, and F. Gamboa. “Efficient estimation of
sensitivity indices”, Journal of Nonparametric Statistics 2013.
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Comparison of the different estimation procedures

Example

We consider the following linear model

Y = f (X1, . . . ,Xp) = αX1 + X2 + . . .+ Xp,

where α > 0 is a fixed constant, X1, X2, . . ., and Xp are p
independent and uniformly distributed random variables on [0, 1].

We consider the estimation of E[E[Y |X1]2] only.
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Comparison of the different estimation procedures

Pick-Freeze

Var(YY 1) =
4

45
α4 +

1

3
m1,pα

3 +
1

3

(
2vp +m2

1,p

)
α2 + 2m1,pvpα+ vp(vp + 2m2

1,p)

Ranks

V 1,1
Rank =

4

45
α4 +

1

3
m1,pα

3 +
1

3

(
4vp +m2

1,p

)
α2 + 4m1,pvpα+ vp

(
vp + 4m2

1,p

)

Efficient

V 1
Eff =

4

45
α4 +

1

3
m1,pα

3 +
1

3

(
4vp +m2

1,p

)
α2 + 4m1,pvpα+ 4vpm

2
1,p,

where m1,p and vp stand for the expectation and the variance of
X2 + . . .+ Xp.
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Figure – Limiting variances with respect to X1 (–) and to X2 (–+) for
p = 2 to p = 7. The rank-based variances are represented in blue while
the Pick-Freeze variances are represented in red.
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Figure – Limiting variances with respect to X1 (–) and to X2 (–+) for
p = 2 to p = 7. The rank-based variances are represented in blue while
the efficient variances are represented in red.



Intro. Pick-Freeze est. Rank est. Comparison Appl.

Outline of the talk

Introduction to SA and Sobol’ indices

The classical Pick-Freeze estimation

Mighty estimation based on ranks

Comparison of the different estimation procedures

Numerical applications



Intro. Pick-Freeze est. Rank est. Comparison Appl.

A non-linear model (I)

Let us consider the following non-linear model

Y = exp{X1 + 2X2},

where X1 and X2 are independent standard Gaussian random
variables. Then tedious computations lead to the Sobol’ indices S1

and S2 :

S1 = (e − 1)/(e5 − 1) ≈ 0.0117

S2 = (e4 − 1)/(e5 − 1) ≈ 0.3636
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A non-linear model (II)

Comparison of the estimation procedures with N = 105 and nrep = 100.
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The so-called Sobol’ g -function

The g -function is defined by

g(X1, . . . ,Xp) =

p∏
i=1

|4Xi − 2|+ ai
1 + ai

,

where (ai )i∈N is a sequence of real numbers and the Xi ’s are i.i.d.
random variables uniformly distributed on [0, 1]. The first-order
Sobol’ indices are :

S i =
(1 + a2

i )−1/3

3−p
∏p

i=1(1 + a2
i )−1 − 1

.

As expected, the lower the coefficient ai , the more significant the
variable Xi . In the sequel, we simply fix ai = i .
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Figure – The Sobol’ g -function model. Boxplot of the square errors of the
estimation of S1 with a fixed sample size and 500 replications. Rank
methodology with n = 700 - left. Pick-Freeze estimation procedure with
N = 100 - right.
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Ratio Pick-Freeze/Rank
N = 10/n = 70 N = 50/n = 350 N = 100/n = 70

mse S1 10.35% 13.32% 10.69%
mse S2 11.76% 15.11% 16.38%
mse S3 11.95% 14.76% 16.37%
mse S4 10.02% 17.29% 17.56%
mse S5 09.63% 13.41% 16.62%
mse S6 11.37% 13.62% 16.22%

Table – The Sobol’ g -function model. Mean squares errors of the
estimation of the six first-order Sobol’ indices with small sample sizes and
with both methods.
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Figure – The Sobol’ g -function model. Mean square errors of the
estimation of the six first-order Sobol’ indices with respect to p
(6,10,15,20,30,40,50), with a fixed sample size (rank - red - n = 200 ;
Pick-Freeze - blue - N = n/(p + 1)) and 500 replications.
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Thanks for your attention !
Any questions ?
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