Pick-Freeze est

Rank est.

Comparison 00000 Appl. 00000000

Global Sensitivity Analysis: a novel generation of mighty estimators based on rank statistics

Agnès Lagnoux Institut de Mathématiques de Toulouse TOULOUSE - FRANCE

SAMO, March 14-16 2022

Pick-Freeze est

Rank est.

Comparison 00000 Appl. 00000000

Outline of the talk

Introduction to SA and Sobol' indices

The classical Pick-Freeze estimation

Mighty estimation based on ranks

Comparison of the different estimation procedures

Numerical applications

Pick-Freeze est

Rank est.

Comparison 00000 Appl. 00000000

Framework

We consider a complicated regression function f defined on $E = E_1 \times E_2 \times \cdots \times E_p$ and valued in \mathbb{R}^k depending on several variables :

$$y = f(x_1, \ldots, x_p), \tag{1}$$

where

- the inputs x_i pour i = 1, ..., p are objects;
- **2** f is deterministic and unknown. It is called a black-box.

Pick-Freeze est

Rank est.

Comparison 00000 Appl. 00000000

Generally,

- f is not analytically known;
- 3 given (x_1, \ldots, x_p) , the computer code gives $y = f(x_1, \ldots, x_p)$;
- computing $y = f(x_1, \ldots, x_p)$ may be costly.

Wishes :

- evaluate y for any value of the p-uplet (x_1, \ldots, x_p) .
- identify the most important variables to be able to fix the less important ones to their nominal value.

Pick-Freeze est

Comparison 00000 Appl. 00000000

Probabilistic frame

In order to quantify the influence of a variable, it is common to assume that the inputs are random :

$$X := (X_1, \ldots, X_p) \in E = E_1 \times \ldots \times E_p.$$

Then $f : E \to \mathbb{R}^k$ is a measurable function that can be evaluated on runs and the output code Y becomes random too :

$$Y=f(X_1,\ldots,X_p).$$

In this presentation, the inputs X_i are assumed to be mutually independent.

Pick-Freeze est

Rank est.

Comparison 00000 Appl. 00000000

Probabilistic frame

Main assumptions :

- X_1, \ldots, X_p are independent.
- $\mathbb{E}[\|Y\|^2] < \infty.$
- Y is scalar (here, for sake of simplicity).

The question is :

How one may quantify the amount of randomness that a variable or a group of variables bring to Y?

The simplest indicator of variability of a random variable is the variance.

Pick-Freeze est.

Rank est.

Comparison 00000 Appl. 00000000

The so-called Sobol' indices

Classically to quantify the amount of randomness that a variable or a group of variables bring to Y, one computes the so-called Sobol' indices.

For instance, the first order Sobol' index with respect to $X_{\mathbf{u}} = (X_i, i \in \mathbf{u})$ is given by

$$S^{u} = rac{\operatorname{Var}(\mathbb{E}[Y|X_{u}])}{\operatorname{Var}(Y)}$$

(assuming Y is scalar).

Such indices stem from the Hoeffding decomposition of the variance of f (or equivalently Y) that is assumed to lie in L^2 .

Pick-Freeze est.

Rank est.

Comparison 00000 Appl. 00000000

Some extensions of the Sobol' indices

• Multidimensional and functional outputs

F. Gamboa, A. Janon, T. Klein, and A. Lagnoux. "Sensitivity analysis for multidimensional and functional outputs". *Electron. J. Stat*, (2014). Volume 8, no. 1, pp 575–603.

Indices in general metric spaces - GMS indices
 E. Camboa, T. Klein, A. Lagnoux, and L. Morono, "

F. Gamboa, T. Klein, A. Lagnoux, and L. Moreno. "Sensitivity analysis in general metric spaces ", *RESS*, 2021.

• Indices based on the whole distribution - Cramér-von Mises indices

F. Gamboa, T. Klein, and A. Lagnoux. "Sensitivity analysis based on Cramér-von Mises distance ", *SIAM UQ*, 2018.

• Universal indices

J.-C. Fort, T. Klein, and A. Lagnoux. "Global sensitivity analysis and Wasserstein spaces", *SIAM UQ*, 2021.

Pick-Freeze est

Rank est.

Comparison 00000 Appl. 00000000

Estimation of the Sobol' indices

- First approach the classical Pick-Freeze estimation
- Second approach mighty estimation based on ranks

Pick-Freeze est.

Rank est.

Comparison 00000 Appl. 00000000

Outline of the talk

Introduction to SA and Sobol' indices

The classical Pick-Freeze estimation

Mighty estimation based on ranks

Comparison of the different estimation procedures

Numerical applications

Intro.	Pick-Freeze est.	Rank est.	Comparison	Appl.
0000000	0000000	0000000000	00000	00000000

Pick-Freeze estimation of Sobol' indices

To fix ideas assume for example p = 5, $\mathbf{u} = \{1, 2\}$ so that $\sim \mathbf{u} = \{3, 4, 5\}$.

We consider the Pick-Freeze variable Y_{u} defined as follows :

- draw $X = (X_1, X_2, X_3, X_4, X_5)$,
- build $X_{\mathbf{u}} = (X_1, X_2, X'_3, X'_4, X'_5)$.

Then, we compute

- Y = f(X),
- $Y_{\mathbf{u}} = f(X_{\mathbf{u}}).$

A small miracle

 $\operatorname{Var}(\mathbb{E}[Y|X_{\mathbf{u}}]) = \operatorname{Cov}(Y, Y_{\mathbf{u}}) \text{ so that } S^{\mathbf{u}} = \frac{\operatorname{Cov}(Y, Y_{\mathbf{u}})}{\operatorname{Var}(Y)}.$

Pick-Freeze est.

Rank est.

Comparison 00000 Appl. 00000000

Pick-Freeze estimation of Sobol' indices

In practice Generate two N-samples :

- one *N*-sample of $X : (X^i)_{i=1,...,N}$,
- one *N*-sample of $X_{\mathbf{u}} : (X_{\mathbf{u}}^{i})_{i=1,...,N}$.

Compute the code on both samples :

Then estimate S^{u} by

$$S_{N,PF}^{\mathbf{u}} = \frac{\frac{1}{N} \sum Y^{i} Y_{\mathbf{u}}^{i} - \left(\frac{1}{N} \sum Y^{i}\right) \left(\frac{1}{N} \sum Y_{\mathbf{u}}^{i}\right)}{\frac{1}{N} \sum (Y^{i})^{2} - \left(\frac{1}{N} \sum Y^{i}\right)^{2}}$$

Rank est.

Pick-Freeze estimation : some statistical questions

Is the Pick-Freeze estimator a "good" estimator of the Sobol' index ?

- Is it consistent? Response : YES SLLN.
- If yes, at which rate of convergence ? Resp. : YES CLT (cv in \sqrt{N}).
- Is it asymptotically efficient? Resp. : YES.
- Is it possible to measure its performance for a fixed *N*? Response : YES Berry-Esseen and concentration inequalities.

 Intro.
 Pick-Freeze est.
 Rank est.
 Comparison
 Appl.

 00000000
 000000000
 0000000000
 000000000
 000000000

Pick-Freeze estimation : consistency and CLT

$$S_{N,PF}^{\mathbf{u}} = \frac{\frac{1}{N} \sum Y^{i} Y_{\mathbf{u}}^{i} - \left(\frac{1}{N} \sum Y^{i}\right) \left(\frac{1}{N} \sum Y_{\mathbf{u}}^{i}\right)}{\frac{1}{N} \sum (Y^{i})^{2} - \left(\frac{1}{N} \sum Y^{i}\right)^{2}}, \ S^{\mathbf{u}} = \frac{\operatorname{Var}\left(\mathbb{E}\left[Y|X_{\mathbf{u}}\right]\right)}{\operatorname{Var}(Y)}$$

Theorem (Janon, Klein, Lagnoux, Nodet, Prieur (2015))

One has S^u_{N,PF}
^{a.s.}_{N→∞} S^u.
If
$$\mathbb{E}[Y^4] < \infty$$
, then

$$\frac{\sqrt{N} \left(S_{N,PF}^{\mathbf{u}} - S^{\mathbf{u}} \right) \xrightarrow{\mathcal{L}}_{N \to \infty} \mathcal{N}_1 \left(0, \sigma_5^2 \right)}{\text{where } \sigma_5^2 = \frac{\operatorname{Var}((Y - \mathbb{E}[Y])[(Y^u - \mathbb{E}[Y]) - S^{\mathbf{u}}(Y - \mathbb{E}[Y])])}{\left(\operatorname{Var}(Y) \right)^2}.$$

Pick-Freeze estimation : concentration inequality

The Central Limit Theorem is a limit result. In real life, the number of experiments is finite. Concentration inequalities allow to quantify the error between the estimate and the index true value for a fixed value of N.

Using soundly Bennett inequality, one gets

Proposition (Gamboa, Janon, Klein, Lagnoux, Prieur (2015))

Let **u** be a subset of $\{1, \ldots, p\}$. Then,

$$\mathbb{P}\left(|S_N^{\mathbf{u}}-S^{\mathbf{u}}| \ge t\right) \le 2\exp\left(-\frac{N \operatorname{Var}(Y)^2}{128} \left(1-\frac{1}{N}\right)^2 \left(\frac{t}{3+2t}\right)^2\right).$$

Pick-Freeze est.

Rank est.

Comparison 00000 Appl. 00000000

Pick-Freeze estimation of Sobol indices

<u>Références</u>

- A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur. " Asymptotic normality et efficiency of a Sobol index estimator", *ESAIM P&S*, 2013.
- F. Gamboa, A. Janon, T. Klein, A. Lagnoux, and C. Prieur. " Statistical Inference for Sobol pick freeze Monte Carlo method", *Statistics*, 2015.

Pick-Freeze est.

Rank est.

Comparison 00000 Appl. 00000000

Drawbacks of the Pick-Freeze estimation

- The cost (=number of evaluations of the function f) of the estimation of the p first-order Sobol' indices is quite expensive : (p + 1)N.
- This methodology is based on a particular design of experiment that may not be available in practice. For instance, when the practitioner only has access to real data.

 \Rightarrow We are then interested in an estimator based on a N-sample only.

Pick-Freeze est

Rank est. •0000000000 Comparison 00000 Appl. 00000000

Outline of the talk

Introduction to SA and Sobol' indices

The classical Pick-Freeze estimation

Mighty estimation based on ranks

Comparison of the different estimation procedures

Numerical applications

Pick-Freeze est

Rank est. 00000000000 Comparison 00000 Appl. 00000000

Mighty estimation based on ranks

Here we assume that the inputs X_i for i = 1, ..., p are scalar and we want to estimate the Sobol' index S^1 with respect to X_1 :

$$S^1 = rac{\operatorname{Var}\left(\mathbb{E}[Y|X_1]
ight)}{\operatorname{Var}(Y)}$$

To do so, we consider a N-sample of the input/output pair (X_1, Y) given by

$$(X_{1,1}, Y_1), (X_{1,2}, Y_2), \ldots, (X_{1,N}, Y_N).$$

Pick-Freeze est

Rank est. 00000000000 Comparison 00000 Appl. 00000000

Mighty estimation based on ranks

The pairs $(X_{1,(1)}, Y_{(1)}), (X_{1,(2)}, Y_{(2)}), \dots, (X_{1,(N)}, Y_{(N)})$ are rearranged in such a way that

$$X_{1,(1)} < \ldots < X_{1,(N)}.$$

Example

- *N* = 6
- Original sample (1,5), (2,9), (-2,3), (6,-4), (0,8)
- Rearranged sample (-2, 3), (0, 8), (1, 5), (2, 9), (6, -4).

Pick-Freeze est

Rank est. 000000000000 Comparison 00000 Appl. 00000000

Mighty estimation based on ranks

We introduce

$$S_{N,Rank}^{1} = \frac{\frac{1}{N} \sum_{i=1}^{N-1} Y_{(i)} Y_{(i+1)} - \left(\frac{1}{N} \sum_{i=1}^{N} Y_{i}\right)^{2}}{\frac{1}{N} \sum_{i=1}^{N} Y_{i}^{2} - \left(\frac{1}{N} \sum_{i=1}^{N} Y_{i}\right)^{2}}$$

Theorem (Gamboa, Gremaud, Klein, Lagnoux, 2021)

• One has
$$S^1_{N,Rank} \xrightarrow[N \to \infty]{a.s.} S^1$$
.

If the X_i's are uniformly distributed and under some mild assumptions on f, then

$$\sqrt{N}\left(S_{N,Rank}^{1}-S^{1}
ight)\overset{\mathcal{L}}{\underset{N
ightarrow\infty}{\rightarrow}}\mathcal{N}_{1}\left(0,\sigma_{R}^{2}
ight).$$

Pick-Freeze est

Rank est. 000000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

We consider the estimation of $\mathbb{E}[\mathbb{E}[Y|X_1]^2]$ only and its estimation

$$\frac{1}{N} \sum_{j=1}^{N} Y_{(j)} Y_{(j+1)}.$$

For j = 1, ..., N - 1, we note $X = X_1$, $W = (X_2, ..., X_p)$ and introduce

$$\Delta_{N,j} := f\left(X_{(j)}, W_j\right) - f\left(\frac{j}{N+1}, W_j\right), \ W_{N,j} := \left(\frac{j}{N+1}, W_j\right).$$

Then, by a Taylor expansion (allowed by the regularity of f),

 $Y_{(j)}Y_{(j+1)} \approx f(W_{N,j})f(W_{N,j+1}) + \Delta_{N,j}f(W_{N,j+1}) + \Delta_{N,j+1}f(W_{N,j}).$

Pick-Freeze est

Rank est. 00000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

First part :

$$B_{N} := \frac{1}{N} \sum_{j=1}^{N-1} f(W_{N,j}) f(W_{N,j+1}).$$

We use the CLT for 1-dependent random variables of Orey et al. (1958) together with

Lemma (Key lemma 1)

There exists a measurable set $\Pi \subset \Omega_W$ with \mathbb{P}_W -probability one such that for any $\omega_W \in \Pi$,

$$\frac{1}{N} \sum_{j=1}^{N-2} \delta(\underbrace{\scriptstyle \frac{j-1}{N+1}, \frac{j}{N+1}, \frac{j+1}{N+1}, \frac{j+2}{N+1}, W_{j-1}(\omega_W), W_j(\omega_W), W_{j+1}(\omega_W)}) \\ \Rightarrow \mathcal{L}_{(X,X,X)} \otimes \mathcal{L}_W \otimes \mathcal{L}_W \otimes \mathcal{L}_W,$$

as $N \to \infty$ where as before X is uniformly distributed on [0,1].

Pick-Freeze est

Rank est. 000000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

Second part :

$$C_{N} := \frac{1}{N} \sum_{j=1}^{N-1} \left(\Delta_{N,j} f\left(W_{N,j+1} \right) + \Delta_{N,j+1} f\left(W_{N,j} \right) \right)$$

$$\approx \frac{1}{N} \sum_{j=1}^{N-1} \left(X_{(j)} - \frac{j}{N+1} \right) f_{x} \left(W_{N,j} \right) \left(f\left(W_{N,j-1} \right) + f\left(W_{N,j+1} \right) \right)$$

by a Taylor expansion.

We work conditionally to \mathcal{F}_W the $\sigma\text{-algebra generated by the }W_j\text{'s}$ and we recall that

$$W_{N,j} := \left(\frac{j}{N+1}, W_j\right).$$

Pick-Freeze est

Rank est. 0000000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

The next lemma is a generalization of the CLT for a L-statistics.

Lemma (Key lemma 2)

Let $(U, \mathbb{B}(U))$ be a Polish space where $\mathbb{B}(U)$. Let $(\chi_j)_{1 \leq j \leq n, n \in \mathbb{N}^*}$ valued in U and Q a proba. measure on $U \times [0, 1]$ such that

$$\frac{1}{N}\sum_{j=1}^{N-1}\delta_{\frac{j}{N},\chi_j}\Rightarrow Q.$$

Let ψ be a bounded measurable real function on $U \times [0, 1]$. We assume that the set of discontinuity points of ψ has null Q-probability. Then,

$$\frac{1}{\sqrt{N}}\sum_{j=1}^{N-1}\left(X_{(j)}-\frac{j}{N+1}\right)\psi\left(\chi_{j},\frac{j}{N}\right)\xrightarrow[N\to\infty]{\mathcal{L}}\mathcal{N}\left(0,s_{\psi}^{2}\right).$$

Pick-Freeze est

Rank est. 00000000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

We use the representation

$$X_{(j)} \stackrel{\mathcal{L}}{=} rac{\sum_{i=1}^{j} E_i}{\sum_{i=1}^{N+1} E_i}$$
, where $E_i \sim \mathcal{E}(1)$ and are independent.

We apply Key lemma 1 with $\chi_j = (W_{j-1}, W_j, W_{j+1})$ to get

$$\frac{1}{n} \sum_{j=1}^{n-1} \delta_{\frac{j-1}{n+1}, \frac{j}{n+1}, \frac{j+1}{n+1}, \chi_j}$$

$$\Rightarrow Q = \mathcal{L}_{(X, X, X)} \otimes \mathcal{L}_W \otimes \mathcal{L}_W \otimes \mathcal{L}_W$$

and we conclude applying Key lemma 2.

Pick-Freeze est

Rank est. 00000000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

Finally, we have a CLT for

$$B_{N} = \frac{1}{N} \sum_{j=1}^{N-1} f(W_{N,j}) f(W_{N,j+1})$$

and, conditionnally to $\mathcal{F}_{W},$ a CLT for

$$C_{N} = \frac{1}{N} \sum_{j=1}^{N-1} (\Delta_{N,j} f(W_{N,j+1}) + \Delta_{N,j+1} f(W_{N,j}))$$

For any *s* and $t \in \mathbb{R}$, $\mathbb{E}\left[e^{i(\sqrt{N}s(B_N - \mathbb{E}[B_N]) + \sqrt{N}tC_N)}\right] = \mathbb{E}\left[e^{i\sqrt{N}s(B_n - \mathbb{E}[B_N])}\mathbb{E}\left[e^{i\sqrt{n}tC_N}|\mathcal{F}_W\right]\right]$

•
$$\mathbb{E}\left[e^{i\sqrt{N}tC_N}|\mathcal{F}_W\right] \to \exp\{-\sigma_C^2 t^2/2\}$$
 a.s. not random;
• $\sqrt{N}s(B_N - \mathbb{E}[B_N]) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}(0, \sigma_B^2).$

Pick-Freeze est

Rank est. 00000000000 Comparison 00000 Appl. 00000000

Sketch of the proof of the CLT

By Slutsky's lemma,

 $\left(\sqrt{N}s(B_N - \mathbb{E}[B_N]), \mathbb{E}\left[e^{i\sqrt{N}tC_N}\big|\mathcal{F}_W\right]\right) \xrightarrow[N \to \infty]{\mathcal{L}} (B_s, \exp\{-\sigma_C^2 t^2/2\}).$

We consider $h: (u, v) \in \mathbb{R} \times D(0, 1) \mapsto e^{iu}v \in \mathbb{C}$ where D(0, 1) is the unit disc in $\mathbb{C}: e^{i\sqrt{N}s(B_N - \mathbb{E}[B_N])} \left[e^{i\sqrt{N}tC_N} | \mathcal{F}_W \right]$ cv in distribution. Finally,

$$\sqrt{N}(B_N - \mathbb{E}[B_N], C_N) \xrightarrow[N \to \infty]{\mathcal{L}} \mathcal{N}_2 \left(0, \begin{pmatrix} \sigma_B^2 & 0 \\ 0 & \sigma_C^2 \end{pmatrix}
ight).$$

We conclude using the delta method.

Pick-Freeze est

Rank est. 0000000000 Comparison 00000 Appl. 00000000

Mighty estimation based on ranks

<u>Références</u>

- F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. "Global Sensitivity Analysis : a new generation of mighty estimators based on rank statistics", *Bernoulli.* 2021.
- S. Chatterjee. "A new coefficient of Correlation", JASA, 2020.
- S. Da Veiga, and F. Gamboa. "Efficient estimation of sensitivity indices", *Journal of Nonparametric Statistics* 2013.

Pick-Freeze est

Rank est.

Comparison •0000

Appl. 00000000

Outline of the talk

Introduction to SA and Sobol' indices

The classical Pick-Freeze estimation

Mighty estimation based on ranks

Comparison of the different estimation procedures

Numerical applications

Pick-Freeze est

Rank est. 00000000000000 Comparison 00000 Appl. 00000000

Comparison of the different estimation procedures

Example

We consider the following linear model

$$Y = f(X_1,\ldots,X_p) = \alpha X_1 + X_2 + \ldots + X_p,$$

where $\alpha > 0$ is a fixed constant, X_1 , X_2 , ..., and X_p are p independent and uniformly distributed random variables on [0, 1].

We consider the estimation of $\mathbb{E}[\mathbb{E}[Y|X_1]^2]$ only.

Comparison of the different estimation procedures

Pick-Freeze

$$\operatorname{Var}(YY^{1}) = \frac{4}{45}\alpha^{4} + \frac{1}{3}m_{1,p}\alpha^{3} + \frac{1}{3}\left(2v_{p} + m_{1,p}^{2}\right)\alpha^{2} + 2m_{1,p}v_{p}\alpha + v_{p}(v_{p} + 2m_{1,p}^{2})$$

Ranks

$$V_{\text{Rank}}^{1,1} = \frac{4}{45}\alpha^4 + \frac{1}{3}m_{1,\rho}\alpha^3 + \frac{1}{3}\Big(4v_\rho + m_{1,\rho}^2\Big)\alpha^2 + 4m_{1,\rho}v_\rho\alpha + v_\rho\Big(v_\rho + 4m_{1,\rho}^2\Big)\alpha^2 + 4m_{1,\rho}v_\rho\alpha + m_{1,\rho}v_\rho\alpha + m_{1,\rho$$

Efficient $V_{\text{Eff}}^{1} = \frac{4}{45}\alpha^{4} + \frac{1}{3}m_{1,p}\alpha^{3} + \frac{1}{3}\left(4v_{p} + m_{1,p}^{2}\right)\alpha^{2} + 4m_{1,p}v_{p}\alpha + 4v_{p}m_{1,p}^{2},$

where $m_{1,p}$ and v_p stand for the expectation and the variance of $X_2 + \ldots + X_p$.

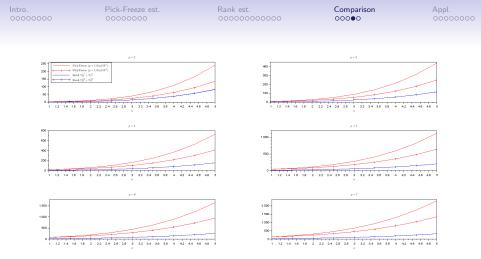


Figure – Limiting variances with respect to X_1 (–) and to X_2 (–+) for p = 2 to p = 7. The rank-based variances are represented in blue while the Pick-Freeze variances are represented in red.

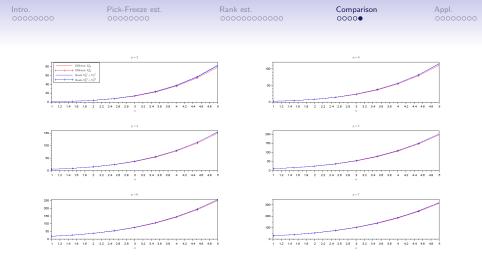


Figure – Limiting variances with respect to X_1 (–) and to X_2 (–+) for p = 2 to p = 7. The rank-based variances are represented in blue while the efficient variances are represented in red.

Pick-Freeze est

Rank est.

Comparison 00000 Appl. •0000000

Outline of the talk

Introduction to SA and Sobol' indices

The classical Pick-Freeze estimation

Mighty estimation based on ranks

Comparison of the different estimation procedures

Numerical applications

Pick-Freeze est

Comparison 00000 Appl.

A non-linear model (I)

Let us consider the following non-linear model

$$Y = \exp\{X_1 + 2X_2\},\$$

where X_1 and X_2 are independent standard Gaussian random variables. Then tedious computations lead to the Sobol' indices S^1 and S^2 :

$$S^1 = (e-1)/(e^5-1) pprox 0.0117$$

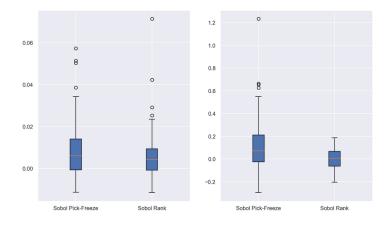
 $S^2 = (e^4-1)/(e^5-1) pprox 0.3636$

Pick-Freeze est

Rank est. 00000000000000 Comparison 00000 Appl.

A non-linear model (II)

Comparison of the estimation procedures with $N = 10^5$ and $n_{rep} = 100$.



Pick-Freeze est.

Rank est. 00000000000000 Comparison 00000 Appl.

The so-called Sobol' g-function

The *g*-function is defined by

$$g(X_1,\ldots,X_p) = \prod_{i=1}^p \frac{|4X_i-2|+a_i}{1+a_i},$$

where $(a_i)_{i \in \mathbb{N}}$ is a sequence of real numbers and the X_i 's are i.i.d. random variables uniformly distributed on [0, 1]. The first-order Sobol' indices are :

$$S^{i} = rac{(1+a_{i}^{2})^{-1}/3}{3^{-p}\prod_{i=1}^{p}(1+a_{i}^{2})^{-1}-1}.$$

As expected, the lower the coefficient a_i , the more significant the variable X_i . In the sequel, we simply fix $a_i = i$.

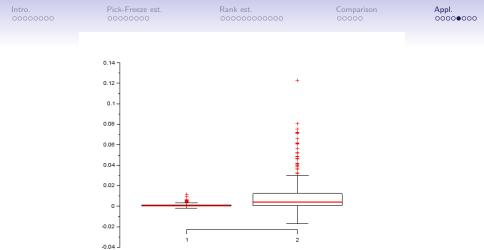


Figure – The Sobol' g-function model. Boxplot of the square errors of the estimation of S^1 with a fixed sample size and 500 replications. Rank methodology with n = 700 - left. Pick-Freeze estimation procedure with N = 100 - right.

Intro.	Pick-Freeze est.	Rank est.	Comparison	Appl .
00000000	00000000	00000000000	00000	00000●00

	Ratio Pick-Freeze/Rank				
	N = 10/n = 70	N = 50/n = 350	N = 100/n = 70		
mse S^1	10.35%	13.32%	10.69%		
mse S^2	11.76%	15.11%	16.38%		
mse S^3	11.95%	14.76%	16.37%		
mse S ⁴	10.02%	17.29%	17.56%		
mse S ⁵	09.63%	13.41%	16.62%		
mse S ⁶	11.37%	13.62%	16.22%		

Table – The Sobol' g-function model. Mean squares errors of the estimation of the six first-order Sobol' indices with small sample sizes and with both methods.

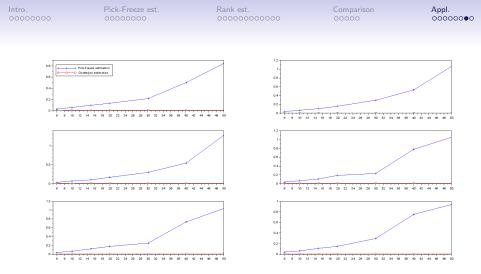


Figure – The Sobol' *g*-function model. Mean square errors of the estimation of the six first-order Sobol' indices with respect to *p* (6,10,15,20,30,40,50), with a fixed sample size (rank - red - n = 200; Pick-Freeze - blue - N = n/(p + 1)) and 500 replications.

Pick-Freeze est.

Comparison 00000 Appl. 0000000

Thanks for your attention ! Any questions ?