Variable importance and explainable AI

Art B. Owen
Stanford University

Based on joint work with:
Masayoshi Mase, Hitachi, Ltd.
Ben Seiler, Stanford Statistics

Opinions are my own, and not those of Stanford, the NSF, or Hitachi, Ltd.

Black box algorithms

- deep neural networks
- random forests
- etc.

State of the art accuracy, but

- hard to interpret / explain
- concerns over fairness

Additionally
Variable importance has direct interest

Variable importance

A step towards explanation

Criteria from Jiang \& O (2003)

For $\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right), x_{j}$ is important if

1) x_{j} affects Y causally
2) x_{j} affects fits $f(\boldsymbol{x})=\hat{y}(\boldsymbol{x})=\widehat{\mathbb{E}}(Y \mid \boldsymbol{x})$; call it mechanically
3) omitting x_{j} deteriorates the fit, e.g., R^{2}

Explaining a prediction is about case 2
Which x_{j} are important for $f(\boldsymbol{x})$?

Variable importance literatures

Statistics and uncertainty quantification
P. Wei, Z. Lu, and J. Song. (2015)

Survey of 197 papers
Including 24 survey papers
Global sensitivity analysis
Razavi et al. (2021)
All star team of 26 GSA authors
100s of references
Explainable AI
C. Molnar (2018)
online book
Other areas
law / insurance / fairness / economics (e.g., Shapley value)

Easy!

We can compute any counter-factual $\quad f(\boldsymbol{x})-f\left(\boldsymbol{x}^{\prime}\right)$

Actually no
It is still hard.

Harder than causal inference

We want causes of effects
not effects of causes
Holland (1988) makes this point;
refers to philosopher Mill (1843)
rules out experiments for 'causes of effects'
The difference
Dawid \& Musio (2021)
Does taking Lipitor increase the chance of type II diabetes?
Did Juanita get type II diabetes because of Lipitor?
Two very different questions

Example

Accident caused by many variables all going wrong at once (e.g. Tenerife) maybe no accident but for
fog, crowding, extra fuel, distractions … communications which is most causal?

https:

//en.wikipedia.org/wiki/Tenerife_airport_disaster
Why was $f(\boldsymbol{x})>0$?
We cannot use

- holdout samples
- bakeoffs on future data

Because $f(\boldsymbol{x})$ is completely known for all \boldsymbol{x} we might want to try

Variable importance

A is an important variable if changing A changes B where B is important

Why is B important?
It just is
so we avoid infinite regress
or a circular argument
Upshot
For us, importance is transferred not created

Quantifying importance

We have

$$
f(\boldsymbol{x}), \quad \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \quad x_{j} \in \mathcal{X}_{j}
$$

Importance of x_{j} on $\hat{y}=f(\boldsymbol{x})$
Change $x_{j} \rightarrow x_{j}^{\prime}$ and watch \hat{y} respond.

1) Which x_{j} do we start with?
2) What x_{j}^{\prime} do we change it to?
3) Where is x_{k} for $k \neq j$ while this is going on?
4) How do we aggregate all those changes?

Too many choices to list

When is x is most influential?

Depends on how you want to keep score,
... which depends on your goals.

Easy case

$\boldsymbol{x}=\left(x_{1}, \ldots, x_{d}\right)$ for independent $x_{j} \in \mathcal{X}_{j}$ and

$$
f(\boldsymbol{x})=\sum_{j=1}^{d} f_{j}\left(x_{j}\right) \quad \text { additive }
$$

We can use single variable measures, e.g.,

$$
\operatorname{Var}\left(f_{j}\left(x_{j}\right)\right)
$$

$$
\mathbb{E}\left(\left|f_{j}\left(x_{j}\right)-f_{j}\left(x_{j}^{\prime}\right)\right|\right)
$$

$$
\int\left|f_{j}^{\prime}(x)\right| \mathrm{d} x
$$

$$
\max _{x}\left|f_{j}^{\prime}(x)\right|
$$

$$
\max _{x} f_{j}(x)-\min _{x} f_{j}(x)
$$

Inputs
$f_{j}\left(x_{j}\right)-f_{j}\left(x_{j}^{\prime}\right)$ for $x_{j}, x_{j}^{\prime} \in \mathcal{X}_{j}$

Multivariable complexities

- Interactions
effect of changing x_{1} depends on $x_{2}, x_{3}, \ldots, x_{d}$
- Correlation / dependency
should changes to x_{1} change x_{2} ?
Most methods change some of the components of \boldsymbol{x} but not all

Hybrid points

$$
\begin{aligned}
& \boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{9}\right) \\
& \boldsymbol{z}=\left(z_{1}, z_{2}, \ldots, z_{9}\right) \\
& u=\{1,3,7,8\} \\
& -u \equiv u^{c}=\{1,2, \ldots, 9\} \backslash u=\{2,4,5,6,9\}
\end{aligned}
$$

Combine two points: $\boldsymbol{x}, \boldsymbol{z}$

Compare
$f\left(\boldsymbol{x}_{-u}: \boldsymbol{z}_{u}\right)-f(\boldsymbol{x})$
carries clues to importance of variables $j \in u$

Awkward combinations

If x_{1} and x_{2} are highly correlated (or structured)
$\Longrightarrow x_{1}: z_{2}$ could be quite unlikely
$Y=$ median housing value: 506 regions and 13 predictors Harrison \& Rubinfeld (1978)

Boston Housing Data

Awkward combinations

Random pairings do not describe 1970s Boston
Any predictions at such points are problematic
Not well regularized

> Boston Housing Data
> Original and permuted

Breiman's permutation

Random forests: Breiman (2001) $\quad f(\boldsymbol{x})=\widehat{\mathbb{E}}(Y \mid \boldsymbol{x})$
To judge x_{j}, permute $x_{1 j}, x_{2 j}, \ldots, x_{n j}$

Old \boldsymbol{x} 's	New \boldsymbol{x} 's
$\left(x_{11}, x_{12}\right)$	$\left(x_{11}, x_{32}\right)$
$\left(x_{21}, x_{22}\right)$	$\left(x_{21}, x_{22}\right)$
$\left(x_{31}, x_{32}\right)$	$\left(x_{31}, x_{52}\right)$
$\left(x_{41}, x_{42}\right)$	$\left(x_{41}, x_{42}\right)$
$\left(x_{51}, x_{52}\right)$	$\left(x_{51}, x_{12}\right)$

Recompute $\sum_{i}\left(y_{i}-f\left(x_{i}\right)\right)^{2}$ on permuted values
Like a Sobol' index.
Uses problematic inputs.

Physically impossible

- Birth date $>$ graduation date
- Systolic blood pressure $<$ diastolic
- Longitude / lattitude combination \Longrightarrow dwelling in ocean
- County $=$ Los Angeles \& State $=$ Colorado

Problems

- We cannot trust any explanation that used these combinations
- Hard to avoid them computationally

Logically impossible

- $x_{\text {Annual }}=x_{\text {Jan }}+x_{\text {Feb }}+\cdots+x_{\text {Dec }} \neq z_{\text {Annual }}$
- Patient's Min. blood $O_{2}>$ Avg. blood O_{2}
- $\operatorname{Min} O_{2} \neq \operatorname{Max} O_{2}$ while \# measurements $=1$ (or 0)

Sobol' and Shapley

Sobol' indices handles interactions among independent variables

Shapley handles interactions and dependence

Global sensitivity analysis

This is a large literature since the early 1990s
See SIAM / ASA Journal of Uncertainty Quantification
Global sensitivity analysis books
Fang, Li \& Sudijanto (2010),
Saltelli, Chan \& Scott (2009),
Saltelli, Ratto \& Andres (2008),
Cacuci, Ionescu-Bujor \& Navon (2005),
Saltelli, Tarantola \& Campolongo (2004),
Santner, Williams \& Notz (2003)
and there are many more articles.
Many references on Sobol' indices: driven by variance explained

Shapley value

Baseline Shapley plus survey
Najmi \& Sundararajan (2020)
Uncertainty quantification
O (2014), Song, Nelson Staum (2016), O \& Prieur (2017)
Shapley for interactions
Rabitti \& Borgonovo (2019)
Computations
Plischke, Rabitti \& Borgonovo (2019)
Black box explanations
Strumbelj \& Kononenko (2010)
SHapley Additive exPlanations (SHAP)
Lundberg \& Lee (2017)
Data Shapley
Gorbani \& Zou $(2019,2020)$
Qualms
Kumar et al. (2020)

From economics

How to attribute a reward among multiple causes or team members.

Solved by Shapley (1953)

\$15 million

Shapley's (1953) value measures contributions of team members.
We need to know what each subset of the team would have accomplished.

Example from Bank of International Settlement

Team	Output value
\varnothing	0
A	$4,000,000$
B	$4,000,000$
C	$4,000,000$
A,B	$9,000,000$
A,C	$10,000,000$
B,C	$11,000,000$
A,B,C	$15,000,000$

Q: How should we split the $\$ 15,000,000$ earned by A, B, C among them?

\$15 million

Example from Bank of International Settlement

Team	Output value
\varnothing	0
A	$4,000,000$
B	$4,000,000$
C	$4,000,000$
A,B	$9,000,000$
A,C	$10,000,000$
B,C	$11,000,000$
A,B,C	$15,000,000$

Q: How should we split the $\$ 15,000,000$ earned by A, B, C among them?
A: Shapley (1953) says: A gets $\$ 4,500,000, \quad B$ gets $\$ 5,000,000$, C gets $\$ 5,500,000$

Shapley setup

Team $u \subseteq \mathcal{D} \equiv\{1,2, \ldots, d\}$ creates value val (u).
Total value is $\operatorname{val}(\mathcal{D})$.
Player j should get ϕ_{j}.

$$
\text { Incremental value of } j \text { given } u
$$

$$
\operatorname{val}(j \mid u)=\operatorname{val}(u \cup\{j\})-\operatorname{val}(u)
$$

Shapley axioms
Efficiency $\quad \sum_{j=1}^{d} \phi_{j}=\operatorname{val}(\mathcal{D})$
Dummy If $\operatorname{val}(j \mid u)=0$, all u then $\phi_{j}=0$
Symmetry If $\mathbf{v a l}(i \mid u)=\mathbf{v a l}(j \mid u)$, when $u \cap\{i, j\}=\varnothing$ then $\phi_{i}=\phi_{j}$
Additivity If games val, val' have values ϕ, ϕ^{\prime} then val + val $^{\prime}$ has value $\phi_{j}+\phi_{j}^{\prime}$
Unique solution

$$
\phi_{j}=\frac{1}{d} \sum_{u \subseteq-j}\binom{d-1}{|u|}^{-1} \operatorname{val}(j \mid u)
$$

For variable importance

Variables $x_{1}, x_{2}, \ldots, x_{d}$ team up to explain f.
Variance explained:

$$
\operatorname{val}(u)=\operatorname{Var}\left(\mathbb{E}\left(f(\boldsymbol{x}) \mid \boldsymbol{x}_{u}\right)\right)
$$

Variance explained under dependence
Song, Nelson \& Staum (2016),
O \& Prieur (2017)

Local importance

Variance explained is global, i.e., all data or a distribution
Local questions
why was target person turned down for a loan?
why did the algo recommend intensive care unit?

Target subject t

For some $t \in 1$: n we want to "explain" $f\left(\boldsymbol{x}_{t}\right)$

Baseline Shapley

Najmi \& Sundararajan (2020)
n subjects $i=1, \ldots, n$
Target subject $t \in 1$: n has $f\left(\boldsymbol{x}_{t}\right)$
Baseline point $\boldsymbol{x}_{b}=\left(x_{b 1}, x_{b 2}, \ldots, x_{b d}\right)$
Your choice. Could be $\boldsymbol{x}_{b}=\overline{\boldsymbol{x}} \equiv(1 / n) \sum_{i=1}^{n} \boldsymbol{x}_{i}$

$$
\begin{array}{rlr}
\text { To explain } f\left(\boldsymbol{x}_{t}\right) & -f\left(\boldsymbol{x}_{b}\right) \\
\boldsymbol{v a l}(u)=f\left(\boldsymbol{x}_{t, u}: \boldsymbol{x}_{b,-u}\right) & \text { "Baseline Shapley" } \\
\boldsymbol{\operatorname { v a l } (u)}=\frac{1}{n} \sum_{i=1}^{n} f\left(\boldsymbol{x}_{t, u}: \boldsymbol{x}_{i,-u}\right) & \text { "random Baseline Shapley" } \\
\operatorname{val}(u)=\mathbb{E}\left(f(\boldsymbol{x}) \mid \boldsymbol{x}_{u}\right) & \text { "cond expectation Shapley" }
\end{array}
$$

Given the value function, Shapley does the rest
Cost is exponential in d Use Monte Carlo for large d

Our contributions

Three papers on arxiv by Mase, Seiler, O

- arXiv:1911.00467
introduces cohort Shapley
- arXiv:2105.07168
uses it for fairness
- arXiv:2105.08013
uses it to quantify what variable(s) identify you

Cohort Shapley

Motivation:

avoid impossible combinations
by only using actually observed combinations
counters some adversarial attacks described in Slack et al (2020)
close to conditional expectation Shapley with empirical distribution
Mase, Seiler, O (2019) arXiv:1911.00467

Similarity

Target has $\boldsymbol{x}_{t}=\left(x_{t 1}, \ldots, x_{t d}\right)$.
Define

$$
z_{i j}=z_{i j}(t)= \begin{cases}1, & x_{i j} \text { 'similar' to } x_{t j} \\ 0, & \text { else }\end{cases}
$$

E.g.: $\quad x_{i j}=x_{t j}, \quad$ or $\quad\left|x_{i j}-x_{t j}\right| \leqslant \delta_{j}$

Toy example

	Subj	Color	Breakfast	$Z_{i 1}(5)$	$Z_{i 2}(5)$	$Z_{i,\{1,2\}}(5)$
1	red	eggs	0	1	0	
2	red	cereal	0	0	0	
Target	5	blue	cereal	1	0	0
	4	red	eggs	0	1	0

Cohorts

	$\{1,4,5\}$		$\{5\}$
similar food	\uparrow		\uparrow
	$\{1,2,3,4,5\}$	\rightarrow	$\{3,5\}$
		similar color	

Toy continued

Similarity constraints

	$\{2\}$	\rightarrow	$\{1,2\}$
similar food	\uparrow		\uparrow
	\varnothing	\rightarrow	$\{1\}$
		similar color	

Value function

Cohorts

$$
C_{t, u}=\left\{i \in 1: n \mid z_{i j}(t)=1, \text { all } j \in u\right\}
$$

Cohort means

$$
\boldsymbol{v a l}(u)=\operatorname{val}(u ; t) \equiv \bar{y}_{t, u}=\frac{1}{\left|C_{t, u}\right|} \sum_{i \in C_{t, u}} f\left(\boldsymbol{x}_{i}\right)
$$

Cohort refinement
Start with

$$
C_{t, \varnothing}=\{1,2, \ldots, n\}
$$

Each j added to u refines the cohort by removing dissimilar subjects.
Important j move the cohort means the most

Value function

$$
\mathbf{v a l}_{\mathrm{CS}}(u)=\bar{y}_{t, u} \quad \text { or } \quad \bar{y}_{t, u}-\bar{y}_{t, \varnothing}
$$

Centering doesn't change ϕ_{j}

Fourth importance

Start from blank slate
reveal $x_{t j}$ in any order
revealing an important variable tells more about y_{t}
I.e., knowledge about $x_{t j}$ is informative about $f\left(\boldsymbol{x}_{t}\right)$

Variables not in the model

Cnsider $f(\boldsymbol{x})=g\left(x_{1}, x_{3}, x_{4}\right)$ with $x_{2} \approx x_{1}$

$$
\text { Is } x_{2} \text { important? }
$$

Baseline Shapley attributes it all to x_{1}
Cohort Shapley shares importance
similar $x_{1} \Longleftrightarrow$ similar x_{2}
Any choice we make is a feature and a bug
Catch-22 according to Kumar et al. (2020)

Cohort Shapley can detect redlining

It could also find false positives

COMPAS recidivism risk score

Correctional Offender Management Profiling for Alternative Sanctions
See e.g., Chouldechova (2017)

Sources

Proprietary algorithm from NorthPointe Inc.
Broward County data 2013, 2014 available via ProPublica
Variables
We used $n=5278$ obs (Black and White) of 6172
$p=5$ predictors:
Age, Race, Gender, \# Priors, Crime (felony vs misdemeanor) discretized as in Chouldechova (2017)

Responses
$Y=$ reoffended
$\hat{Y}=$ predicted to reoffend

Properties

1) COMPAS did not use race
2) Proprietary algorithm: we don't have $f(\cdot)$
3) Algo was not trained on Broward County

We can still apply cohort Shapley

We get variable importance for each person's race / gender etc.
Our one analysis is not necessarily definitive

Cohort Shapley effects for race

Response is 'predicted to re-offend'
Orange is for Black subjects Blue for White

Shapley effects for race, ctd

Impact (prediction \hat{Y})

Impact (false positive)

Impact (response Y)

Impact (false negative)

Responses

prediction \hat{Y}
false positive $Y=0 \& \hat{Y}=1 \quad$ false negative $Y=1 \& \hat{Y}=0$

There's a debate about $Y \mid \hat{Y}$ vs $\hat{Y} \mid Y$
Chouldechova (2017)

Gender split

Cohort Shapley for race

prediction \hat{Y}
false positive $Y=0 \& \hat{Y}=1$
response Y
false negative $Y=1 \& \hat{Y}=0$

Bootstrap

Aggregate cohort Shapley for $Y-\hat{Y}$

Violin plot from Bayesian bootstrap: Rubin (1981) reweight observations by $\operatorname{Exp}(1)$ random variables

Uniqueness measure

Golle (2006)
In 1990 census data, 87% of the US population can be uniquely identified by gender, ZIP code and full date of birth

Uniqueness Shapley
$\operatorname{val}(u)=-\log _{2}\left(\# C_{t, u}\right) \quad$ (log of cohort cardinality)
ϕ_{j} describes power to identify target t
North Carolina voter registration
$n=7,538,125$
Huge speedup using all dimension trees of Moore \& Lee (1998)
We can see how identifying: Zip Code, Race, Party, Gender, Age are for individuals
for aggregates

Next steps

Think more about how to interpret Shapley impacts
E.g., what response is most appropriate?

What about missing variables?
Which variables to include/exclude
Which subsets of subjects?
Generalize to Shapley interactions

Thanks

- Masayoshi Mase, Benjamin Seiler, co-authors
- Chiara Sabatti for her literature course on fairness
- Hitachi, Ltd.
- NSF: IIS-1837931
- Priscilla Travis, Nick Cogan, Aseel Farhat, Sabrena Bouie, Billy Oates, Yousuff Hussaini
- William Becker, Samuele Lo Piano
- Giray Ökten

