(Non)linear dimension reduction of input parameter space using gradient information

Clémentine PRIEUR
Grenoble Alpes University

SAMO, March 14-16, 2022
Tallahassee, Florida (USA)

MASCOTANUM

Daniele Bigoni (formerly at MIT, USA)

Youssef Marzouk (MIT, USA)

Paul Constantine (University of Colorado Boulder, USA)
\star Our framework is the following:

$$
\mathcal{M}:\left\{\begin{aligned}
\mathcal{X}=\prod_{i=1}^{d} \mathcal{X}_{i} & \rightarrow \mathcal{Y} \\
x & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right) \quad \text { with }
\end{aligned}\right.
$$

- \mathcal{M} expensive to evaluate,
- high dimension $d \gg 1$.
* We aim to:
- select a subset of inputs to build a surrogate for \mathcal{M},
- exploit gradient information when available (e.g., automatic differentiation, adjoint method).
* More precisely, we seek for a decomposition of the form:

$$
\begin{aligned}
& \mathcal{M}\left(x_{1}, \ldots, x_{d}\right) \approx f \circ g(x)=f\left(g_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, g_{r}\left(x_{1}, \ldots, x_{d}\right)\right) \\
& \text { with } r \leq d .
\end{aligned}
$$

$\sin \left(x_{1}\right)$
$\underbrace{g(x)=x_{1}}$
linear in first canonical coordinate

$\sin \left(x_{1}+x_{2}^{2}\right)$
$\underbrace{g(x)=x_{1}+x_{2}^{2}}_{\text {nonlinear }}$

$$
\underbrace{\begin{array}{c}
\sin \left(x_{1}+x_{2}\right) \\
g(x)=x_{1}+x_{2}
\end{array}}_{\text {linear }}
$$

Uncertainty quantification framework

Uncertain input parameters are modeled by a probability distribution μ on \mathcal{X}, from experts' knowledge or from observations.

E.g., if the inputs are independent, this probability distribution is characterized by its marginals: $\mu(d x)=\prod_{i=1}^{d} \mu_{i}\left(d x_{i}\right)$.

Approximation error is measured as

$$
\mathbb{E}\left(\|\mathcal{M}(\mathbf{X})-f \circ g(X)\|^{2}\right)
$$

with some specific norm on \mathcal{Y}.

Joint work with

Introduction

Total Sobol' indices from an approximation point of view
Gradient-based linear dimension reduction
Framework
Poincaré-based upper bound
Link with total Sobol' indices
A numerical example
Extension to nonlinear dimension reduction
Exploiting the gradient $\nabla \mathcal{M}$ to construct the feature map g Adaptive procedure based on $\left\{\mathbf{X}^{(i)}, \mathcal{M}\left(\mathbf{X}^{(i)}\right), \nabla \mathcal{M}\left(\mathbf{X}^{(i)}\right)\right\}_{i=1}^{N}$?
Numerical illustrations
Conclusion, perspectives
Thanks

In the following,

$$
\mathcal{M}:\left\{\begin{aligned}
\mathcal{X}=\mathbb{R}^{d} & \rightarrow \mathcal{Y}=\mathbb{R}^{p} \\
x & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{aligned}\right.
$$

For $p=1$ (scalar output) and $\mathbf{u} \subset\{1, \ldots, d\}$, one defines the total Sobol' index for \mathcal{M} associated to u as:

$$
S_{\mathrm{u}}^{\text {tot }}=1-\frac{\operatorname{Var}\left[\mathbb{E}\left(Y \mid X_{-u}\right)\right]}{\operatorname{Var}[Y]}=\frac{\mathbb{E}\left[\operatorname{Var}\left(Y \mid X_{-\mathrm{u}}\right)\right]}{\operatorname{Var}[Y]}
$$

with $X_{-\mathrm{u}}=\left(X_{i}, i \notin \mathbf{u}\right)$ (see, e.g., [Da Veiga et al., 2021]).
We then have the following equality [Hart and Gremaud, 2018]:

$$
S_{\mathrm{u}}^{\text {tot }}=\frac{\left\|Y-\mathbb{E}\left(Y \mid X_{-\mathrm{u}}\right)\right\|^{2}}{\|Y-\mathbb{E}(Y)\|^{2}}
$$

with $\left\|Y-\mathbb{E}\left(Y \mid X_{-u}\right)\right\|^{2}=\mathbb{E}\left(\left|\mathcal{M}(X)-\mathbb{E}\left(Y \mid X_{-u}\right)\right|^{2}\right)$.

A natural extension to the vector-valued [Zahm et al., 2020] case:

$$
S_{\mathrm{u}}^{\text {tot }}=\frac{\mathbb{E}\left(\left\|\mathcal{M}(\mathbf{X})-\mathbb{E}\left(\mathcal{M}(\mathbf{X}) \mid \mathbf{X}_{-\mathrm{u}}\right)\right\| v^{2}\right)}{\mathbb{E}\left(\|\mathcal{M}(\mathbf{X})-\mathbb{E}(\mathcal{M}(\mathbf{X}))\| v^{2}\right)}
$$

with V a vectorial Hilbert space and $\|\cdot\| V$ the associated norm.

Gradient based linear dimension reduction [Constantine and Diaz, 2017, Zahm et al., 2020]

Framework:

$$
\mathrm{x} \mapsto \mathcal{M}\left(x_{1}, \ldots, x_{d}\right) \in V
$$

with $V=\mathbb{R}^{p}$ endowed with a Hilbertian norm $\|\cdot\| v$.
One aims at approximating \mathcal{M} by a ridge function (a function which is constant along a subspace). More specifically, one seeks for $r \leq d$ and $A \in \mathbb{R}^{r \times d}$ such that:

$$
\mathcal{M}(\mathrm{x}) \approx f(A x) \text { with } f: \mathbb{R}^{r} \rightarrow V
$$

or equivalently for $r \leq d$ and a rank- r projector $P_{r} \in \mathbb{R}^{d \times d}$ such that:

$$
\mathcal{M}(x) \approx h\left(P_{r} x\right) \text { with } h: \mathbb{R}^{d} \rightarrow V
$$

We assume $\mathbf{X} \sim \mu=\mathcal{N}(m, \Sigma)$.
Controlled approximation problem Given $\varepsilon \geq 0$, find h and a rank-r projector P_{r} such that

$$
\mathbb{E}\left(\left\|\mathcal{M}(\mathbf{X})-h\left(P_{r} \mathbf{X}\right)\right\| v^{2}\right) \leq \varepsilon
$$

Procedure:

1. derive an upper bound for the error

$$
\left\|\mathcal{M}-h \circ P_{r}\right\| \leq \mathcal{R}\left(h, P_{r}\right)
$$

2. fix r and solve

$$
\min _{h, P_{r}} \mathcal{R}\left(h, P_{r}\right)
$$

3. increase r until

$$
\min _{h, P_{r}} \mathcal{R}\left(h, P_{r}\right) \leq \varepsilon
$$

Note that P_{r} is not restricted to be a projector onto the canonical coordinates.

Derivation of the upper bound

For any projector P_{r},

$$
\left\|\mathcal{M}-\mathbb{E}_{\mu}\left(\mathcal{M} \mid \sigma\left(P_{r}\right)\right)\right\|=\min _{h}\left\|\mathcal{M}-h \circ P_{r}\right\|
$$

From Poincaré type inequalities, we can deduce that for $\mathcal{M}: \mathbb{R}^{d} \rightarrow V$ smooth vector-valued and for any projector P_{r},

$$
\left\|\mathcal{M}-\mathbb{E}_{\mu}\left(\mathcal{M} \mid \sigma\left(P_{r}\right)\right)\right\| \leq \sqrt{\operatorname{trace}\left(H\left(I_{d}-P_{r}\right) \sum\left(I_{d}-P_{r}\right)^{T}\right)}
$$

with matrix $H \in \mathbb{R}^{d \times d}$ defined by

$$
H=\int(\nabla \mathcal{M})^{*}(\nabla \mathcal{M}) \mathrm{d} \mu
$$

where

$$
\left\{\begin{array}{l}
\nabla \mathcal{M}(x): \mathbb{R}^{d} \rightarrow V \text { Jacobian of } \mathcal{M} \text { at } x \\
\nabla \mathcal{M}(x)^{*} \text { is the adjoint of } \nabla \mathcal{M}(x)
\end{array}\right.
$$

What is the matrix H ?

$$
H=\int(\nabla \mathcal{M})^{*}(\nabla \mathcal{M}) \mathrm{d} \mu \quad \in \mathbb{R}^{d \times d}
$$

- Algebraic case: $V=\mathbb{R}^{p}$ with $\|\cdot\| v$ such that $\|v\|_{V}^{2}=v^{T} R_{V} v$ for some SPD matrix $R_{V} \in \mathbb{R}^{p \times p}$. Then

$$
H=\int(\nabla \mathcal{M})^{T} R_{V}(\nabla \mathcal{M}) \mathrm{d} \mu
$$

with

$$
\nabla \mathcal{M}=\left(\begin{array}{ccc}
\frac{\partial \mathcal{M}_{1}}{\partial x_{1}} & \ldots & \frac{\partial \mathcal{M}_{1}}{\partial x_{d}} \\
\vdots & \ddots & \vdots \\
\frac{\partial \mathcal{M}_{p}}{\partial x_{1}} & \ldots & \frac{\partial \mathcal{M}_{p}}{\partial x_{d}}
\end{array}\right)
$$

- Scalar-valued case: $V=\mathbb{R}$ with $\|\cdot\|_{V}=|\cdot|$, then

$$
H=\int(\nabla \mathcal{M})(\nabla \mathcal{M})^{T} \mathrm{~d} \mu
$$

with

$$
\nabla \mathcal{M}=\left(\begin{array}{c}
\frac{\partial \mathcal{M}}{\partial x_{1}} \\
\vdots \\
\frac{\partial \mathcal{M}}{\partial x_{d}}
\end{array}\right)
$$

$\rightsquigarrow \rightsquigarrow$ Active-Subspace method [Constantine and Diaz, 2017]

Minimizing the upper bound
Let $\left(v_{i}, \lambda_{i}\right)$ be the i-th generalized eigenpair of $\left(H, \Sigma^{-1}\right)$:

$$
H v_{i}=\lambda_{i} \Sigma^{-1} v_{i}
$$

One has:

$$
\min _{P_{r}} \sqrt{\operatorname{trace}\left(H\left(I_{d}-P_{r}\right) \sum\left(I_{d}-P_{r}\right)^{T}\right)}=\sqrt{\sum_{i=r+1}^{d} \lambda_{i}}
$$

A solution is a Σ^{-1}-orthogonal proj. onto span $\left\{v_{1}, \ldots, v_{r}\right\}$ and

- a fast decay in λ_{i} ensures $\sqrt{\sum_{i=r+1}^{d} \lambda_{i}} \leq \varepsilon$ for $r=r(\varepsilon) \ll d$,
- H provides a test that reveals the low-effective dimension.

Let's come back to the upper bound, namely,

$$
\left\|\mathcal{M}-\mathbb{E}_{\mu}\left(\mathcal{M} \mid \sigma\left(P_{r}\right)\right)\right\| \leq \sqrt{\operatorname{trace}\left(H\left(I_{d}-P_{r}\right) \Sigma\left(I_{d}-P_{r}\right)^{T}\right)}
$$

Choosing $V=\mathbb{R}^{p}$ and P_{r} as the projector that extracts the coordinates of X indexed by u , we get:

$$
S_{\mathrm{u}}^{\text {tot }}=\frac{\left\|\mathcal{M}-\mathbb{E}_{\mu}\left(\mathcal{M} \mid \sigma\left(I_{d}-P_{r}\right)\right)\right\|^{2}}{\left\|\mathcal{M}-\mathbb{E}_{\mu}(\mathcal{M})\right\|^{2}}
$$

thus

$$
\begin{aligned}
S_{\mathrm{u}}^{\text {tot }} & \leq \frac{\operatorname{trace}\left(\Sigma P_{r}^{T} H P_{r}\right)}{\left\|\mathcal{M}-\mathbb{E}_{\mu}(\mathcal{M})\right\|^{2}} \\
& \leq \frac{\sum_{i \in \mathrm{u}} \operatorname{Var}\left(X_{i}\right) H_{i, i}}{\left\|\mathcal{M}-\mathbb{E}_{\mu}(\mathcal{M})\right\|^{2}}
\end{aligned}
$$

See, e.g., Sobol' \& Kucherenko, 2009 and Lamboni et al., 2013 for similar results in the case $p=1$ (scalar output).

A numerical example
Diffusion problem on $\Omega=[0,1]^{2}: \quad\left\{\begin{array}{rlrl}\nabla \cdot \kappa \nabla u & =0 & & \text { in } \Omega \\ u & =x+y & \text { on } \partial \Omega\end{array}\right.$

- Random diffusion field κ, log-normal distribution.
- After finite element discretization:

$$
x=\log (\kappa) \in \mathbb{R}^{3252} \sim \mu=\mathcal{N}(0, \Sigma)
$$

(a) mesh, 3252 elements

(b) log. diffusion field

(c) solution

1. Scenario $1 \mathcal{M}: x \mapsto u \in V \subset H^{1}(\Omega)$
2. Scenario $2 \mathcal{M}: x \mapsto u_{\mid \Omega_{s}} \in V \subset H^{1}\left(\Omega_{s}\right)$
3. Scenario $3 \mathcal{M}: x \mapsto\left(u_{\left.\right|_{s_{1}}}, u_{\left.\right|_{s_{2}}}\right) \in V=\mathbb{R}^{2}$ (canonical norm)
$\left\llcorner_{\text {Gradient-based linear dimension reduction }}\right.$

Modes v_{1}, v_{2}, \ldots

Approximation of the conditional expectation assuming H is known

$$
\mathbb{E}_{\mu}\left(\mathcal{M} \mid \sigma\left(P_{r}\right)\right) \approx \hat{F}_{r}: x \mapsto \frac{1}{M} \sum_{k=1}^{M} \mathcal{M}\left(P_{r} x+\left(I_{d}-P_{r}\right) \mathbf{Y}^{(k)}\right), \quad \mathbf{Y}^{(k)} \stackrel{i i d}{\sim} \mu
$$

$\mathcal{M}: x \mapsto u$

$\mathcal{M}: x \mapsto u_{\Omega_{s}}$

$\mathcal{M}: x \mapsto\left(u_{\mid s_{1}}, u_{\left.\right|_{s_{2}}}\right)$

$$
\left\|\mathcal{M}-\hat{F}_{r}\right\|=\text { function }(r)
$$

We can show that

$$
\mathbb{E}\left(\left\|\mathcal{M}-\hat{F}_{r}\right\|^{2}\right) \leq\left(1+M^{-1}\right) \operatorname{trace}\left(\Sigma\left(I_{d}-P_{r}^{T}\right) H\left(I_{d}-P_{r}\right)\right)
$$

Approximation of H to get the projector

$$
H \approx \widehat{H}=\frac{1}{K} \sum_{k=1}^{K}\left(\nabla \mathcal{M}\left(\mathbf{X}^{(k)}\right)\right)^{*}\left(\nabla \mathcal{M}\left(\mathbf{X}^{(k)}\right)\right), \quad \mathbf{X}^{(k)} \stackrel{i i d}{\sim} \mu
$$

$\mathcal{M}: x \mapsto u$

$\mathcal{M}: x \mapsto u_{\mid \Omega_{s}}$

$\mathcal{M}: x \mapsto\left(u_{\left.\right|_{s_{1}}}, u_{\left.\right|_{s_{2}}}\right)$

$$
\begin{aligned}
& \sqrt{\operatorname{trace}\left(\sum\left(I_{d}-\hat{P}_{r}^{T}\right) \widehat{H}\left(I_{d}-\hat{P}_{r}\right)\right)}=\text { function }(r) \\
& \sqrt{\operatorname{trace}\left(\sum\left(I_{d}-\hat{P}_{r}^{T}\right) H\left(I_{d}-\hat{P}_{r}\right)\right)}=\text { function }(r)
\end{aligned}
$$

Notice that $\operatorname{rank}(\widehat{H}) \leq K \max _{1 \leq k \leq K} \operatorname{rank}\left(\nabla \mathcal{M}\left(\mathbf{X}^{(k)}\right)\right) \leq K \operatorname{dim}(V)$

Extension to nonlinear dimension reduction [Bigoni et al., 2022]

$$
\mathcal{M}:\left\{\begin{aligned}
\mathcal{X} \subset \mathbb{R}^{d} & \rightarrow \mathbb{R} \\
x & \mapsto y=\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)
\end{aligned}\right.
$$

$\mathcal{M}\left(x_{1}, \ldots, x_{d}\right) \approx f \circ g(x)=f\left(g_{1}\left(x_{1}, \ldots, x_{d}\right), \ldots, g_{r}\left(x_{1}, \ldots, x_{d}\right)\right)$, with the feature map g is not necessarily linear.

We propose, for any $r \leq d$, a two-step procedure.

- Step 1 , construction of the feature map g : solve $\min _{g \in \mathcal{G}_{r}} J\left(g_{1}, \ldots, g_{r}\right)$ with J a gradient-based cost function.
- Step 2, construction of the profile fucntion f :

$$
\text { solve } \min _{f \in \mathcal{F}_{r}} \mathbb{E}\left[(\mathcal{M}(X)-f \circ g(X))^{2}\right] \text {. }
$$

Choice of the cost function J
Note that, if $\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)=f \circ g(x)$, then

$$
\nabla \mathcal{M}(x)=\underbrace{\nabla g(x)^{T}}_{\in \mathbb{R}^{d \times r}} \underbrace{\nabla f(g(x))}_{\in \mathbb{R}^{r}} \Rightarrow \nabla \mathcal{M}(x) \in \operatorname{range}\left(\nabla g(x)^{T}\right) .
$$

A natural choice for J is then

$$
J(g):=\mathbb{E}\left[\left\|\nabla \mathcal{M}(\mathbf{X})-\Pi_{\text {range }\left(\nabla g(X)^{T}\right)} \nabla \mathcal{M}(\mathbf{X})\right\|^{2}\right] .
$$

Choice of the cost function J
Note that, if $\mathcal{M}\left(x_{1}, \ldots, x_{d}\right)=f \circ g(x)$, then

$$
\nabla \mathcal{M}(\mathrm{x})=\underbrace{\nabla g(x)^{T}}_{\in \mathbb{R}^{d \times r}} \underbrace{\nabla f(g(\mathrm{x}))}_{\in \mathbb{R}^{r}} \Rightarrow \nabla \mathcal{M}(\mathrm{x}) \in \operatorname{range}\left(\nabla g(x)^{T}\right) .
$$

A natural choice for J is then

$$
J(g):=\mathbb{E}\left[\left\|\nabla \mathcal{M}(\mathbf{X})-\Pi_{\text {range } \left.(\nabla g(X))^{T}\right)} \nabla \mathcal{M}(\mathbf{X})\right\|^{2}\right] .
$$

We have proven $\mathcal{M}=f \circ g \Rightarrow J(g)=0$. Question a) Is the reciprocal true?

Question a): is the reciprocal \Uparrow true? yes!
Proposition:
Assume $\mathcal{M} \in \mathcal{C}^{1}(\mathcal{X} ; \mathbb{R})$ and $\mathcal{G}_{r} \subset \mathcal{C}^{1}\left(\mathcal{X} ; \mathbb{R}^{r}\right)$.
Let $g: \mathcal{X} \rightarrow \mathbb{R}^{r}$ be a smooth function such that the level-sets

$$
g^{-1}(\{\mathbf{z}\})=\{x \in \mathcal{X}: g(x)=\mathbf{z}\}
$$

are pathwise-connected for any $z \in \mathbb{R}^{r}$. Then

$$
J(g)=0 \Rightarrow \exists f \text { such that } \mathcal{M}=f \circ g
$$

Are g's level sets pathwise-connected?

Question b): does $J(g) \approx 0$ implies $\mathcal{M} \approx f \circ g$? yes!
Denote by $\mathbb{C}(Z)$ the Poincaré constant of a random vector Z, that is, the smallest constant such that

$$
\operatorname{Var}(h(Z)) \leq \mathbb{C}(Z) \mathbb{E}\left[\|\nabla h(Z)\|^{2}\right]
$$

holds for any smooth function $h: \operatorname{supp}(Z) \rightarrow \mathbb{R}$.
Proposition:
Assume $\mathcal{G}_{r} \subset \mathcal{C}^{1}\left(\mathrm{X} ; \mathbb{R}^{r}\right)$ and $\operatorname{rank}\left(\nabla g(\mathrm{x})^{T}\right)=r \forall g \in \mathcal{G}_{r}$, $\forall x \in \mathcal{X}$. Assume

$$
\mathbb{C}\left(\mathbf{X} \mid \mathcal{G}_{r}\right):=\sup _{g \in \mathcal{G}_{r}} \sup _{\mathbf{z} \in g(\mathcal{X})} \mathbb{C}(\mathbf{X} \mid g(\mathbf{X})=\mathbf{z})<\infty .
$$

Then for any $g \in \mathcal{G}_{r}$, there exists a profile $f: \mathbb{R}^{r} \rightarrow \mathbb{R}$ such that

$$
\mathbb{E}\left[(\mathcal{M}(X)-f \circ g(X))^{2}\right] \leq \mathbb{C}\left(X \mid \mathcal{G}_{r}\right) J(g)
$$

Question c): how to minimize $g \mapsto J(g)$? We seek for g solving $\min _{g=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{r}} J(g)=\mathbb{E}\left[\left\|\nabla \mathcal{M}(\mathbf{X})-\Pi_{\text {range }\left(\nabla g(X)^{T}\right)} \nabla \mathcal{M}(\mathbf{X})\right\|^{2}\right]$
with $\mathcal{G}_{r}=\mathcal{G}^{r}=\operatorname{span}\left\{\Phi_{1}, \ldots, \Phi_{K}\right\}^{r}$.

Question c): how to minimize $g \mapsto J(g)$? We seek for g solving

$$
\min _{g=\left(g_{1}, \ldots, g_{r}\right) \in \mathcal{G}_{r}} J(g)=\mathbb{E}\left[\left\|\nabla \mathcal{M}(\mathrm{X})-\Pi_{\text {range }\left(\nabla g(\mathrm{X})^{T}\right)} \nabla \mathcal{M}(\mathrm{X})\right\|^{2}\right]
$$

with $\mathcal{G}_{r}=\mathcal{G}^{r}=\operatorname{span}\left\{\Phi_{1}, \ldots, \Phi_{K}\right\}^{r}$.
It is equivalent to seek for g solving

$$
\max _{G \in \mathbb{R} \# \mathcal{G} \times r} \mathcal{R}(G)=\mathbb{E}\left[\operatorname{trace}\left(G^{T} H(X) G\right)\left(G^{T} \Sigma(\mathrm{X}) G\right)^{-1}\right] \text { where }
$$

$H(x)=\nabla \Phi(x)\left(\nabla \mathcal{M}(x) \nabla \mathcal{M}(x)^{T}\right) \nabla \Phi(x)^{T}$,
$\Sigma(\mathrm{x})=\nabla \Phi(\mathrm{x}) \nabla \Phi(\mathrm{x})^{T}$, with $\Phi(\mathrm{x})=\left(\Phi_{1}(\mathrm{x}), \ldots, \Phi_{K}(\mathrm{x})\right)$.
Maximization is solved with a quasi-Newton algorithm.
For linear feature maps, $g(x)=A x$, our procedure coincides with active subspace method.

Adaptive construction of g from $\left\{\mathbf{X}^{(i)}, \mathcal{M}\left(\mathbf{X}^{(i)}\right), \nabla \mathcal{M}\left(\mathbf{X}^{(i)}\right)\right\}_{i=1}^{N}$
Empirical cost
We first replace $\mathcal{R}(G)$ by its empirical counterpart:

$$
\hat{\mathcal{R}}^{N}(G)=\frac{1}{N} \sum_{i=1}^{N} \operatorname{trace}\left(G^{T} H\left(\mathbf{X}^{(i)}\right) G\right)\left(G^{T} \Sigma\left(\mathbf{X}^{(i)}\right) G\right)^{-1} .
$$

For any $1 \leq r \leq d$, we adapt the complexity of $\mathcal{G}_{r}=\mathcal{G}^{r}$ to the sample size N.

Matching Pursuit

We use a state-of-the-art [Migliorati, 2015, Migliorati, 2019] reduced-set matching pursuit algorithm on downward-closed polynomial spaces to build g.

Cross Validation

is used to know when to stop the iterations (before it overfits).

Once g is computed, how to construct f ?

$\min _{f \in \mathcal{F}_{r}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathcal{M}\left(\mathbf{X}^{(i)}\right)-f \circ g\left(\mathbf{X}^{(i)}\right)\right)^{2} \underbrace{+\left\|\nabla \mathcal{M}\left(\mathbf{X}^{(i)}\right)-\nabla f \circ g\left(\mathbf{X}^{(i)}\right)\right\|^{2}}_{\text {recycle the gradients }}$
As for \mathcal{G}, we adapt the complexity of $\mathcal{F}_{r}=\mathcal{F}^{r}$ using reduced-set matching pursuit algorithm on downward-closed polynomial spaces.

Once g is computed, how to construct f ?

$\min _{f \in \mathcal{F}_{r}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathcal{M}\left(\mathbf{X}^{(i)}\right)-f \circ g\left(\mathbf{X}^{(i)}\right)\right)^{2} \underbrace{+\left\|\nabla \mathcal{M}\left(\mathbf{X}^{(i)}\right)-\nabla f \circ g\left(\mathbf{X}^{(i)}\right)\right\|^{2}}_{\text {recycle the gradients }}$
As for \mathcal{G}, we adapt the complexity of $\mathcal{F}_{r}=\mathcal{F}^{r}$ using reduced-set matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

$$
\min _{v \in \mathcal{V}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathcal{M}\left(\mathbf{X}^{(i)}\right)-v\left(\mathbf{X}^{(i)}\right)\right)^{2} \underbrace{+\left\|\nabla \mathcal{M}\left(\mathbf{X}^{(i)}\right)-\nabla v\left(\mathbf{X}^{(i)}\right)\right\|^{2}}_{\text {recycle the gradients }}
$$

Illustration: isotropic function

Illustration: Borehole function

Continuous lines: mean squared error $\mathbb{E}\left[(\mathcal{M}(X)-f \circ g(X))^{2}\right]$, Dashed lines: cost function $J(g)$. The width of the shaded region corresponds to the standard deviation over 20 experiments.

Comparison with nonlinear (NL) kernel supervised PCA and NL kernel dimension reduction.

$$
\mathrm{Y}=\binom{\mathcal{M}(\mathrm{X})}{\nabla \mathcal{M}(\mathrm{X})} \in \mathbb{R}^{1+d}
$$

Kernel supervised PCA [Barshan et al., 2011] aims to maximize the dependence between $G^{T} \Phi(X)$ and Y measured with the Hilbert-Schmidt norm of the cross-covariance operator restricted to an arbitrary reproducing kernel Hilbert space (RKHS).
Kernel dimension reduction [Fukumizu et al., 2009] aims to minimize the dependence between Y and $\mathrm{Y} \mid G^{T} \Phi(\mathrm{X})$ measured with the Hilbert-Schmidt norm of the conditional covariance operator restricted to some RKHS.
In our experiments, we used squared exponential kernels for both κ_{X} and κ_{Y}.

Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR) for $m=1$. Blue points: 1000 samples of $(g(X), \mathcal{M}(X))$. Red lines: function $g(\times) \mapsto f \circ g(\mathrm{x})$ with either $N=50$ (top row) or $N=500$ (bottom row). Here, f is a univariate polynomial of degree 6 and g a multivariate polynomial of degree 2 .

Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR) for $m=1$. Blue points: 1000 samples of $(g(X), \mathcal{M}(X))$. Red lines: function $g(\times) \mapsto f \circ g(\mathrm{x})$ with either $N=30$ (top row) or $N=300$ (bottom row). Here, f is a univariate polynomial of degree 6 and g a multivariate polynomial of degree 2 .

Conclusion

- In this talk, we presented a trip around global sensitivity analysis (via total Sobol' indices) and (non)linear dimension reduction.
- We proposed a two-step algorithm to build the approximation $\mathcal{M}(x) \approx f \circ g(x)$ adaptively with respect to the input/output sample. This algorithme takes into account gradient information.

Conclusion

- In this talk, we presented a trip around global sensitivity analysis (via total Sobol' indices) and (non)linear dimension reduction.
- We proposed a two-step algorithm to build the approximation $\mathcal{M}(\mathrm{x}) \approx f \circ g(\mathrm{x})$ adaptively with respect to the input/output sample. This algorithme takes into account gradient information.

Perspectives

- It would be interesting to propose an optimal (or at least a clever) sampling procedure.
- If $\mathcal{G}_{r}=\left\{\mathrm{x} \mapsto U^{T} \mathrm{x}: U \in \mathbb{R}^{d \times r}\right.$ orth. columns $\}$ and if $X \sim \mathcal{N}\left(0, I_{d}\right)$, then $\mathbb{C}\left(X \mid \mathcal{G}_{r}\right)=1$.
Although assuming $\mathbb{C}\left(\mathbf{X} \mid \mathcal{G}_{r}\right)<\infty$ is usual, e.g., in the analysis of Markov semigroups or in molecular dynamics, proving it remains an open challenge in more general settings.

Thanks for your attention!

Thanks for your attention!

And a little bit of advertisement

Some references I

围
Barshan, E., Ghodsi, A., Azimifar, Z., and Jahromi, M. Z. (2011). Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds.
Pattern Recognition, 44(7):1357-1371.
周
Bigoni, D., Marzouk, Y., Prieur, C., and Zahm, O. (to appear, 2022).
Nonlinear dimension reduction for surrogate modeling using gradient information.
Information and Inference: A Journal of the IMA.

Constantine, P. G. and Diaz, P. (2017).
Global sensitivity metrics from active subspaces.
Reliability Engineering \& System Safety, 162:1-13.

Da Veiga, S., Gamboa, F., looss, B., and Prieur, C. (2021).
Basics and Trends in Sensitivity Analysis: Theory and Practice in R.
SIAM.

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2009).
Kernel dimension reduction in regression.
The Annals of Statistics, 37(4):1871-1905.

Some references II

Hart, J. and Gremaud, P. (2018).
An approximation theoretic perspective of sobol' indices with dependent variables.
International Journal for Uncertainty Quantification, 8 (6).
Migliorati, G. (2015).
Adaptive polynomial approximation by means of random discrete least squares.
In Numerical Mathematics and Advanced Applications-ENUMATH 2013, pages 547-554. Springer.

Migliorati, G. (2019).
Adaptive approximation by optimal weighted least-squares methods.
SIAM Journal on Numerical Analysis, 57(5):2217-2245.

Sobol', I. M. and Kucherenko, S. (2009).
Derivative based global sensitivity measures and the link with global sensitivity indices.
Mathematics and Computers in Simulation, 79:3009-3017.

Zahm, O., Constantine, P. G., Prieur, C., and Marzouk, Y. M. (2020). Gradient-based dimension reduction of multivariate vector-valued functions. SIAM Journal on Scientific Computing, 42(1):A534-A558.

