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- Introduction

* Our framework is the following:

X=T, 8 = Y .

. Hl—l i ‘)/ with
x =y =M(xg, .o %)

> expensive to evaluate,

> high dimension d > 1.

* We aim to:
> select a subset of inputs to build a surrogate for
> exploit gradient information when available (e.g., automatic
differentiation, adjoint method).

* More precisely, we seek for a decomposition of the form:

(X1, xq) = fog(x) =Ff(gi(xa. - . xd)y ooy & (1, oo x4))
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LIntroduction

sin(xy) sin(x1 + x2)
g(x) =x g(x) =x1 +x
N—— ——
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nonlinear nonlinear
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Introduction

Uncertainty quantification framework

Uncertain input parameters are modeled by a probability

distribution ;. on X, from experts’ knowledge or from observations.
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E.g., if the inputs are independent, this probability distribution is
characterized by its marginals: p(dx) = [T, pi(dx).
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Approximation error is measured as
E (| M(X) = Fog(X)[?),

with some specific norm on ).
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LTotal Sobol’ indices from an approximation point of view
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LTotaI Sobol" indices from an approximation point of view

In the following,

J x=RI - Y=RP
' x = y=M(x,.... Xd)

For p =1 (scalar output) and u C {1,...,d}, one defines the total
Sobol’ index for /1 associated to u as:

_ Var[E (Y[Xw)] _ E[Var (VX))
Var[Y] B Var[Y]

with X_,, = (X;. / ¢ u) (see, e.g., [Da Veiga et al., 2021]).

We then have the following equality [Hart and Gremaud, 2018]:

Set=1

1Y —E( X ) |2
Iy =E(M)>

with |V —E(Y[X ) |2 = E (M(X) ~ E(Y[X ) ).

tot _
55 =
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LTotaI Sobol" indices from an approximation point of view

A natural extension to the vector-valued [Zahm et al., 2020] case:

E([|M(X) — E(M(X)[X_u)|[v?)
E(|M(X) = E(M(X))[v?)

with V' a vectorial Hilbert space and || - |||/ the associated norm.

tot _
S =
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LGradient-based linear dimension reduction

LFramework

Gradient based linear dimension reduction
[Constantine and Diaz, 2017, Zahm et al., 2020]
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LGradient—based linear dimension reduction

Framework
Framework:
X+ M(x1,..,xq4) €V
with V' = " endowed with a Hilbertian norm || - || .

One aims at approximating by a ridge function (a function
which is constant along a subspace). More specifically, one seeks
for r < d and A € R such that:

(x) = f(Ax) with f : R" — V/,

or equivalently for r < d and a rank-r projector P, € R*9 such
that:
(x) ~ h(P, x) with h : RY — /.
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LGradient—based linear dimension reduction

Framework

We assume X ~ ;1 = N(m, %).

Controlled approximation problem Given ¢ > 0, find h and a rank-r
projector P, such that

E(IM(X) - h(PX)[2) <.

Procedure:
1. derive an upper bound for the error

M = ho Py < R(h, P,)

2. fix r and solve
min R(h, P;)

shr
3. increase r until

i h,P) <
g RAbFPr) <

Note that P, is not restricted to be a projector onto the canonical

coordinates.
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Gradient-based linear dimension reduction

Poincaré-based upper bound

Derivation of the upper bound

For any projector P,
M = Eu(Mlo(P))]| = min [[M —ho Prl.

From Poincaré type inequalities, we can deduce that for
: RY — V smooth vector-valued and for any projector P,,

M —E,u( ) < \/trace (la = P)X(lg — Pr)T)

with matrix H € R9%9 defined by

H= [0y (T )dp

VM(x): R? — V Jacobian of M at x
V. M(x)* is the adjoint of V. \(x)

where
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LGradient-based linear dimension reduction

L Poincaré-based upper bound

What is the matrix H ?

H= /(VM)*(VM)du e RI*?

> Algebraic case: V = RP with || - ||y such that ||v||3 = vT Ryv
for some SPD matrix Ry € RP*P. Then

H= /(VM)TRV (V) dpe

with
3./\/(1 8/\/(1
6X1 Tt 6xd
VM = : S
8/\/1,3 BA/I,,
Ox1 Tt Oxy
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LGradient-based linear dimension reduction

L Poincaré-based upper bound

» Scalar-valued case: V =R with || - ||y = -], then
H— /(VM)(VM)Tdu

with

oM
Ox1
=]
oM
BXd

~»~~ Active-Subspace method [Constantine and Diaz, 2017]

15/ 40



LGradient—based linear dimension reduction

Poincaré-based upper bound

Minimizing the upper bound
Let (v;, \;) be the i-th generalized eigenpair of (H, X~ 1):

HV,' = )\,-Z’l Vi.

One has:

min Virace(H(ly — P)E(ly — P)T) =

A solution is a ¥ ~!-orthogonal proj. onto span{vy,...,v,} and

> a fast decay in \; ensures />S9 .\ <& for r=r(e) < d,

» H provides a test that reveals the low-effective dimension.
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LGradient—based linear dimension reduction

- Link with total Sobol’ indices

Let's come back to the upper bound, namely,

IM — Eu(Mlo (P < y/trace(H(ly — P (ly — P)T).

Choosing V' = IR” and P, as the projector that extracts the
coordinates of X indexed by u, we get:

gtot _ I _EM( lo(la — Pr))||2
! M = B (M)

thus
trace (ZPrT HP,)

= T =B,

>icw Var(Xi)H; i
= M =Eu(M)]]2
See, e.g., Sobol’ & Kucherenko, 2009 and Lamboni et al., 2013 for
similar results in the case p = 1 (scalar output).

tot
Su
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LGradient-based linear dimension reduction

LA numerical example

A numerical example

Diffusion problem on Q = [0, 1]?: { VorVu =0 in 02

u =x+y onofd
» Random diffusion field %, log-normal distribution.

> After finite element discretization:

x = log(r) € R3%? ~ 1y = N(0,X)

(a) mesh, 3252 elements (b) log. diffusion field (c) solution

1. Scenario 1 M :x~u €V C H(Q)
2. Scenario 2 M x > ujg, € V C HY(Qs)
3. Scenario 3 M : x > (ujs,, ujs,) € V = R? (canonical norm)
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LGradient-based linear dimension reduction

LA numerical example

Modes vy, vs, . ..

mode 1 mode 2 mode 3 mode 5

Scenario 2 Scenario 1 K-L modes

Scenario 3

m(P,) = span{vi, va,..., v, }
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LGradient-based linear dimension reduction

LA numerical example
:

Approximation of the conditional expectation assuming H is known

M
B, (Mlo(P) ~ B ixes % Z/\/I(P,x +(ly— PYYRY, YW X,
k=1

1070
1072 107
1078 107
1074 1074
bound(K-L proj.)
bound(optimal proj.) [ 1070 107
M il
107 107°
L T q 4 | | _r | |
10 100 200 500 o 00 200 300 o 100 200 300
M:ix—u Mx = g, Mix = (U, ugs,)

|V — Fy|| = function(r)

We can show that

]E(||/\/l - fr,||2> < (1+ MY trace(Z(ly — PTYH(ly — P)))
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LGradient—based linear dimension reduction

A numerical example

Approximation of H to get the projector

K
~ 1 ,
Hox H= oy (VA (), x® oy
k=1
M:ixw—u M x = g, Mix = (U, uys,)
\/trace():(ld — I'i’,-’—)ﬁ(ld — P,)) = function(r) (dashed curves)
\/trace(Z(Id — PTYH(ly — P,)) = function(r) (solid curves)

Notice that rank(/l—\l) < K maxi<k<k rank(V,\/l(X(k))) < Kdim(V)
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LExtension to nonlinear dimension reduction

Extension to nonlinear dimension reduction [Bigoni et al., 2022]
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LE><tension to nonlinear dimension reduction
X CR? R
M - C —

M(xa, ..., xq)~fog(x)="~f(glx.....xq),-..,&(x1.....x4)),

with the feature map g is not necessarily linear.

We propose, for any r < d, a two-step procedure.

» Step 1, construction of the feature map g:
solve mign J(g1,...,8r) with J a gradient-based cost function.
gE€Yr

> Step 2, construction of the profile fucntion f:
solve  min | (M(X) = f o g(X))?] .

feF,
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LE><tension to nonlinear dimension reduction

LE><p|oiting the gradient V. M to construct the feature map g

Choice of the cost function J

Note that, if M(x1.....xq) = f o g(x), then

VM(x) = Vg(x)T VFf(g(x)) = VM(x) € range(Vg(x)T).

GRdX r cRr

A natural choice for J is then

J(g) =K [HVM(X) - nrange(Vg(X)T)VM(X)Hz] :

24/ 40



LE><tension to nonlinear dimension reduction

- Exploiting the gradient V.M to construct the feature map g

Choice of the cost function J

Note that, if M(x1.....xq) = f o g(x), then

VM(x) = Vg(x)T VF(g(x)) = VM(x) € range(Vg(x)").
cRdxr cRrr

A natural choice for J is then

J(g) =K [HV‘\/I(X) - nrange(Vg(X)T)v'\/l(X)Hz} :

We have proven M = f o g = J(g) = 0. Question a) Is the
reciprocal true?
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- Extension to nonlinear dimension reduction

- Exploiting the gradient V.M to construct the feature map g

Question a): is the reciprocal 1 true? yes!

Proposition:
Assume M € CH(X;R) and G, C C}H(X;R").
Let g: X — R" be a smooth function such that the level-sets

{z)) = {xe Vi gx) =12},

are pathwise-connected for any z € R". Then

J(g) =0= 3f such that M =fog
Are g's level sets pathwise-connected?
yes!  no
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- Extension to nonlinear dimension reduction

- Exploiting the gradient V.M to construct the feature map g
Question b): does J(g) ~ 0 implies M ~ f o g7 yes!

Denote by C(Z) the Poincaré constant of a random vector Z,
that is, the smallest constant such that

2
Var(h(2)) < C(2) E [||VA(2)|?]
holds for any smooth function h : supp(Z) — R.

Proposition:
Assume G, C C1(X;R") and rank <Vg(x)T> =rvgeg,
Vx e X. Assume

C(X|G,) :== sup sup C(X|g(X)=2) < 0.
g€Grzeg(Y)

Then for any g € G, there exists a profile f : R” — R such that

E [(M(X) - f og(X))?] < C(XIG,) J(g).
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LE><tension to nonlinear dimension reduction

LE><p|oiting the gradient V. M to construct the feature map g

Question ¢): how to minimize g — J(g)? We seek for g solving

2
. J =E |[[|[VM(X) - I_Iran e VM(X
i (&) = BIVA0) = Nrngeqmeon VO]

with G, = G" = span{®y,..., Pk }".
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- Extension to nonlinear dimension reduction

- Exploiting the gradient V.M to construct the feature map g

Question ¢): how to minimize g — J(g)? We seek for g solving

i 2
g:(ngf,rjg,)eng(g [HV (X) - ”range(vg(x)T)V (X)H }

with G, = G" = span{®y,... &k}’

It is equivalent to seek for g solving

max R(G)=E [trace(GTH(X)G)(GTE(X)G) ™| where

H(x) = VO (VM) VM(x) ) Vo(x) T,
Y (x) = VO(x)VO(x)T, with d(x) = (d1(x),..., Pk (x)).

Maximization is solved with a quasi-Newton algorithm.

For linear feature maps, g(x) = Ax, our procedure coincides with
active subspace method.
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- Extension to nonlinear dimension reduction

LAdapt\'ve procedure based on {X(’). ,\/l(X('.))‘ V.\/I(Xm)}//v:l?
Adaptive construction of g from {X), M(X") VM (XD)}N

Empirical cost

We first replace R(G) by its empirical counterpart:
. 1 . .
RN(G) = o > trace(GTH(X)G)(GTE(X)6) ™
i=1

For any 1 < r < d, we adapt the complexity of G, = G" to the
sample size N.

Matching Pursuit

We use a state-of-the-art [Migliorati, 2015, Migliorati, 2019]
reduced-set matching pursuit algorithm on downward-closed
polynomial spaces to build g.

Cross Validation

is used to know when to stop the iterations (before it overfits).
28/ 40



L Extension to nonlinear dimension reduction
LAdaptive procedure based on {X(), AM(x(1)), V.\/I(X('.))}’N:l?

Once g is computed, how to construct 7
1N

min — Y (M(X7)— fog(X(i)))z—l—va\/l(X('-)) —Vfo g(x(">)||2
i=1

recycle the gradients

As for G, we adapt the complexity of F, = F" using reduced-set
matching pursuit algorithm on downward-closed polynomial spaces.
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L Extension to nonlinear dimension reduction
LAdaptive procedure based on {X(), AM(x(1)), V.\/I(X(f))}’/\lzl?

Once g is computed, how to construct 7

1 ZN: (M)~ Fog(XD))*+[VAM(X") = VF o g(x)|"

i=1
recycle the gradients

As for G, we adapt the complexity of F, = F" using reduced-set
matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

iy 3~ (XY = (X)) 7K = T (X

i=1
recycle the gradients
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LE><tension to nonlinear dimension reduction

L Numerical illustrations

Illustration: isotropic function

M(x) = cos (\/x2 + ...+ x3)
M:N(Oald)

20
x € R
N =100
0
100 g 10
r 1 -
10t E 4 — 10
10-2 % é E 1072
= F 1 s
= q0-3 L i ~ 10-3
S0 10 —m=1
al i > —m=
1074 g FR U i
b ] g m=25
—5 L .|
1077 10-5 —m=10 |4
[ E —m=d |
107% 10-6 : ‘ L
50 100 150 200 250

OMP iterations for g

OMP iterations for f
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- Extension to nonlinear dimension reduction

Numerical illustrations

lllustration: Borehole function

x1=r, ~N(0.1,3-107%)

X =r ~ log N'(7.71,1.0112)

x3=Tm ~ U(63070,115600)
(x) = 27 T j (Hag—Hy) ’ xa = Hum o ~U(990,1110)

(/i) (it ) ) xs =T ~U(63.1,116)

xo = He  ~ U(700,820)

xr =1L ~ U(1120,1680)

x6 = Ko  ~ U(9855,12045)

10! —~N -0
0% — N =60
~ N =150

Continuous lines: mean squared error E[(/M(X) — f o g(X))?], Dashed lines: cost
function J(g). The width of the shaded region corresponds to the standard deviation

over 20 experiments. 31/ 40



- Extension to nonlinear dimension reduction

Numerical illustrations

Comparison with nonlinear (NL) kernel supervised PCA and NL
kernel dimension reduction.

Yo (v (&) R

Kernel supervised PCA [Barshan et al., 2011] aims to maximize
the dependence between G7®(X) and Y measured with the
Hilbert-Schmidt norm of the cross-covariance operator restricted to
an arbitrary reproducing kernel Hilbert space (RKHS).

Kernel dimension reduction [Fukumizu et al., 2009] aims to
minimize the dependence between Y and Y|G' ®(X) measured
with the Hilbert-Schmidt norm of the conditional covariance
operator restricted to some RKHS.

In our experiments, we used squared exponential kernels for both

Kkx and Ky.
32/ 40



- Extension to nonlinear dimension reduction

Numerical illustrations

Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X), M(X)). Red lines: function
g(x) — f o g(x) with either N = 50 (top row) or N = 500 (bottom row). Here, f is a

univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Extension to nonlinear dimension reduction

Numerical illustrations

KS-PCA NL-KDR GNLDR
200 7 200
—fog

150

200

150 150 |

u(X)

100 100 100

50 50 50

200 200 -+ 2000

150 4 1501

u(X)

100

100

50

Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X), M (X)). Red lines: function
g(x) — f o g(x) with either N = 30 (top row) or N = 300 (bottom row). Here, f is a

univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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L Conclusion, perspectives

Conclusion

» In this talk, we presented a trip around global sensitivity
analysis (via total Sobol" indices) and (non)linear dimension
reduction.

» We proposed a two-step algorithm to build the approximation

(x) = f o g(x) adaptively with respect to the input/output

sample. This algorithme takes into account gradient
information.
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L Conclusion, perspectives

Conclusion
» In this talk, we presented a trip around global sensitivity
analysis (via total Sobol" indices) and (non)linear dimension
reduction.
» We proposed a two-step algorithm to build the approximation
(x) = f o g(x) adaptively with respect to the input/output
sample. This algorithme takes into account gradient
information.
Perspectives
» It would be interesting to propose an optimal (or at least a
clever) sampling procedure.
> If G, = {x— UTx: U cRI orth. columns} and if
X ~ N(0,1y), then C(X|G,) = 1.
Although assuming C(X|G,) < oo is usual, e.g., in the analysis
of Markov semigroups or in molecular dynamics, proving it

remains an open challenge in more general settings.
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|—Thanks

Thanks for your attention!
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LThanks

And a little bit of advertisement

SIRASTIEN 04 VA« JAMICE CAMIOA
HERTRAND 10055 + CLIMENTIE PREUS.

Basics and Trends in
Sensitivity Analysis
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