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Introduction

? Our framework is the following:

M :
{
X =

∏d
i=1Xi → Y

x 7→ y =M(x1, . . . , xd) with

I M expensive to evaluate,
I high dimension d � 1.

? We aim to:
I select a subset of inputs to build a surrogate forM,
I exploit gradient information when available (e.g., automatic

differentiation, adjoint method).

? More precisely, we seek for a decomposition of the form:

M(x1, . . . , xd) ≈ f ◦g(x) = f (g1(x1, . . . , xd), . . . , gr (x1, . . . , xd))

with r ≤ d .
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Introduction

sin(x1)
g(x) = x1︸ ︷︷ ︸

linear in first canonical coordinate

sin(x1 + x2)
g(x) = x1 + x2︸ ︷︷ ︸

linear

sin(x1 + x22 )
g(x) = x1 + x22︸ ︷︷ ︸

nonlinear

sin(x21 + x22 )
g(x) = x21 + x22︸ ︷︷ ︸

nonlinear
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Introduction

Uncertainty quantification framework

Uncertain input parameters are modeled by a probability
distribution µ on X , from experts’ knowledge or from observations.

E.g., if the inputs are independent, this probability distribution is
characterized by its marginals: µ(dx) =

∏d
i=1 µi(dxi).

Approximation error is measured as

E
(
‖M(X)− f ◦ g(X)‖2

)
,

with some specific norm on Y.
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Total Sobol’ indices from an approximation point of view
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Total Sobol’ indices from an approximation point of view

In the following,

M :
{
X = Rd → Y = Rp

x 7→ y =M(x1, . . . , xd)

For p = 1 (scalar output) and u ⊂ {1, . . . , d}, one defines the total
Sobol’ index forM associated to u as:

Stot
u = 1− Var [E (Y |X−u)]

Var[Y ] = E [Var (Y |X−u)]
Var[Y ]

with X−u = (Xi , i /∈ u) (see, e.g., [Da Veiga et al., 2021]).
We then have the following equality [Hart and Gremaud, 2018]:

Stot
u = ‖Y − E (Y |X−u) ‖2

‖Y − E (Y ) ‖2 ,

with ‖Y − E (Y |X−u) ‖2 = E
(
|M(X)− E (Y |X−u) |2

)
.
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Total Sobol’ indices from an approximation point of view

A natural extension to the vector-valued [Zahm et al., 2020] case:

Stot
u = E(‖M(X)− E(M(X)|X−u)‖V 2)

E(‖M(X)− E(M(X))‖V 2) ,

with V a vectorial Hilbert space and ‖ · ‖V the associated norm.
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Gradient-based linear dimension reduction
Framework

Gradient based linear dimension reduction
[Constantine and Diaz, 2017, Zahm et al., 2020]
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Gradient-based linear dimension reduction
Framework

Framework:
x 7→ M(x1, . . ., xd) ∈ V

with V = Rp endowed with a Hilbertian norm ‖ · ‖V .

One aims at approximatingM by a ridge function (a function
which is constant along a subspace). More specifically, one seeks
for r ≤ d and A ∈ Rr×d such that:

M(x) ≈ f (A x) with f : Rr → V ,

or equivalently for r ≤ d and a rank-r projector Pr ∈ Rd×d such
that:

M(x) ≈ h(Pr x) with h : Rd → V .
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Gradient-based linear dimension reduction
Framework

We assume X ∼ µ = N (m,Σ).
Controlled approximation problem Given ε ≥ 0, find h and a rank-r
projector Pr such that

E
(
‖M(X)− h(PrX)‖V 2) ≤ ε.

Procedure:
1. derive an upper bound for the error

‖M− h ◦ Pr‖ ≤ R(h,Pr )

2. fix r and solve
min
h,Pr
R(h,Pr )

3. increase r until
min
h,Pr
R(h,Pr ) ≤ ε

Note that Pr is not restricted to be a projector onto the canonical
coordinates.
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Gradient-based linear dimension reduction
Poincaré-based upper bound

Derivation of the upper bound
For any projector Pr ,

‖M− Eµ(M|σ(Pr ))‖ = min
h
‖M− h ◦ Pr‖.

From Poincaré type inequalities, we can deduce that for
M : Rd → V smooth vector-valued and for any projector Pr ,

‖M− Eµ(M|σ(Pr ))‖ ≤
√
trace

(
H(Id − Pr )Σ(Id − Pr )T

)
with matrix H ∈ Rd×d defined by

H =
∫

(∇M)∗(∇M)dµ

where {
∇M(x) : Rd → V Jacobian ofM at x
∇M(x)∗ is the adjoint of ∇M(x)

13/ 40



Gradient-based linear dimension reduction
Poincaré-based upper bound

What is the matrix H ?

H =
∫

(∇M)∗(∇M)dµ ∈ Rd×d

I Algebraic case: V = Rp with ‖ · ‖V such that ‖v‖2V = vTRV v
for some SPD matrix RV ∈ Rp×p. Then

H =
∫

(∇M)TRV (∇M) dµ

with

∇M =


∂M1
∂x1 . . . ∂M1

∂xd... . . . ...
∂Mp
∂x1 . . .

∂Mp
∂xd


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Gradient-based linear dimension reduction
Poincaré-based upper bound

I Scalar-valued case: V = R with ‖ · ‖V = | · |, then

H =
∫

(∇M)(∇M)T dµ

with

∇M =


∂M
∂x1...
∂M
∂xd


  Active-Subspace method [Constantine and Diaz, 2017]
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Gradient-based linear dimension reduction
Poincaré-based upper bound

Minimizing the upper bound
Let (vi , λi) be the i-th generalized eigenpair of (H,Σ−1):

Hvi = λiΣ−1vi .

One has:

min
Pr

√
trace

(
H(Id − Pr )Σ(Id − Pr )T

)
=

√√√√ d∑
i=r+1

λi

A solution is a Σ−1-orthogonal proj. onto span{v1, . . . , vr} and
I a fast decay in λi ensures

√∑d
i=r+1 λi ≤ ε for r = r(ε)� d ,

I H provides a test that reveals the low-effective dimension.
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Gradient-based linear dimension reduction
Link with total Sobol’ indices

Let’s come back to the upper bound, namely,

‖M− Eµ(M|σ(Pr ))‖ ≤
√
trace

(
H(Id − Pr )Σ(Id − Pr )T

)
.

Choosing V = Rp and Pr as the projector that extracts the
coordinates of X indexed by u, we get:

Stot
u = ‖M− Eµ(M|σ(Id − Pr ))‖2

‖M− Eµ(M)‖2

thus

Stot
u ≤

trace
(

ΣPT
r HPr

)
‖M− Eµ(M)‖2

≤
∑

i∈u Var(Xi)Hi ,i
‖M− Eµ(M)‖2 ·

See, e.g., Sobol’ & Kucherenko, 2009 and Lamboni et al., 2013 for
similar results in the case p = 1 (scalar output).
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Gradient-based linear dimension reduction
A numerical example

A numerical example
Diffusion problem on Ω = [0, 1]2:

{
∇ · κ∇u = 0 in Ω

u = x + y on ∂Ω
I Random diffusion field κ, log-normal distribution.
I After finite element discretization:

x = log(κ) ∈ R3252 ∼ µ = N (0,Σ)

(a) mesh, 3252 elements (b) log. diffusion field (c) solution

1. Scenario 1M : x 7→ u ∈ V ⊂ H1(Ω)
2. Scenario 2M : x 7→ u|Ωs ∈ V ⊂ H1(Ωs)
3. Scenario 3M : x 7→ (u|s1 , u|s2) ∈ V = R2 (canonical norm)
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Gradient-based linear dimension reduction
A numerical example

Modes v1, v2, . . .
mode 1 mode 2 mode 3 mode 4 mode 5 mode 6

K
-L

m
o
d
es

S
ce
n
ar
io

1
S
ce
n
a
ri
o
2

S
ce
n
a
ri
o
3

Im(Pr ) = span{v1, v2, . . . , vr}
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Gradient-based linear dimension reduction
A numerical example

Approximation of the conditional expectation assuming H is known

Eµ(M|σ(Pr )) ≈ F̂r : x 7→
1
M

M∑
k=1

M(Prx + (Id − Pr )Y(k)), Y(k) iid∼ µ
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bound(K-L proj.)
bound(optimal proj.)
true error, M = 1

true error, M = 5

true error, M = 20

M : x 7→ u
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M : x 7→ u|Ωs
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10−6

10−5

10−4

10−3

10−2

10−1

100

M : x 7→ (u|s1 , u|s2)
‖M− F̂r‖ = function(r)

We can show that

E
(
‖M− F̂r‖2

)
≤ (1 + M−1) trace(Σ(Id − PT

r )H(Id − Pr ))
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Gradient-based linear dimension reduction
A numerical example

Approximation of H to get the projector

H ≈ Ĥ =
1
K

K∑
k=1

(∇M(X(k)))∗(∇M(X(k))), X(k) iid∼ µ
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M : x 7→ (u|s1 , u|s2)√
trace(Σ(Id − P̂T

r )Ĥ(Id − P̂r )) = function(r) (dashed curves)√
trace(Σ(Id − P̂T

r )H(Id − P̂r )) = function(r) (solid curves)

Notice that rank(Ĥ) ≤ K max1≤k≤K rank
(
∇M(X(k))

)
≤ K dim(V )
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Extension to nonlinear dimension reduction

Extension to nonlinear dimension reduction [Bigoni et al., 2022]
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Extension to nonlinear dimension reduction

M :
{
X ⊂ Rd → R

x 7→ y =M(x1, . . . , xd)

M(x1, . . . , xd) ≈ f ◦ g(x) = f (g1(x1, . . . , xd), . . . , gr (x1, . . . , xd)) ,
with the feature map g is not necessarily linear.

We propose, for any r ≤ d , a two-step procedure.

I Step 1, construction of the feature map g :
solve min

g∈Gr
J(g1, . . . , gr ) with J a gradient-based cost function.

I Step 2, construction of the profile fucntion f :

solve min
f ∈Fr

E
[(
M(X)− f ◦ g(X)

)2]
.
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Choice of the cost function J

Note that, ifM(x1, . . . , xd) = f ◦ g(x), then

∇M(x) = ∇g(x)T︸ ︷︷ ︸
∈Rd×r

∇f (g(x))︸ ︷︷ ︸
∈Rr

⇒ ∇M(x) ∈ range(∇g(x)T ).

A natural choice for J is then

J(g) := E
[∥∥∇M(X)− Πrange(∇g(X)T )∇M(X)

∥∥2] .

We have provenM = f ◦ g ⇒ J(g) = 0. Question a) Is the
reciprocal true?

24/ 40



Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Choice of the cost function J

Note that, ifM(x1, . . . , xd) = f ◦ g(x), then

∇M(x) = ∇g(x)T︸ ︷︷ ︸
∈Rd×r

∇f (g(x))︸ ︷︷ ︸
∈Rr

⇒ ∇M(x) ∈ range(∇g(x)T ).

A natural choice for J is then

J(g) := E
[∥∥∇M(X)− Πrange(∇g(X)T )∇M(X)

∥∥2] .
We have provenM = f ◦ g ⇒ J(g) = 0. Question a) Is the
reciprocal true?

24/ 40



Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Question a): is the reciprocal ⇑ true? yes!

Proposition:
AssumeM∈ C1(X ;R) and Gr ⊂ C1(X ;Rr ).
Let g : X → Rr be a smooth function such that the level-sets

g−1({z}) = {x ∈ X : g(x) = z},

are pathwise-connected for any z ∈ Rr . Then

J(g) = 0⇒ ∃ f such thatM = f ◦ g

Are g ’s level sets pathwise-connected?
yes! no
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Question b): does J(g) ≈ 0 impliesM≈ f ◦ g? yes!

Denote by C(Z ) the Poincaré constant of a random vector Z ,
that is, the smallest constant such that

Var(h(Z )) ≤ C(Z )E
[∥∥∇h(Z )

∥∥2]
holds for any smooth function h : supp(Z )→ R.
Proposition:
Assume Gr ⊂ C1(X;Rr ) and rank

(
∇g(x)T

)
= r ∀ g ∈ Gr ,

∀ x ∈ X . Assume

C(X|Gr ) := sup
g∈Gr

sup
z∈g(X )

C(X|g(X) = z) <∞.

Then for any g ∈ Gr , there exists a profile f : Rr → R such that

E
[(
M(X)− f ◦ g(X)

)2] ≤ C(X|Gr ) J(g).
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Extension to nonlinear dimension reduction
Exploiting the gradient ∇M to construct the feature map g

Question c): how to minimize g 7→ J(g)? We seek for g solving

min
g=(g1,...,gr )∈Gr

J(g) = E
[∥∥∇M(X)− Πrange(∇g(X)T )∇M(X)

∥∥2]
with Gr = Gr = span{Φ1, . . . ,ΦK}r .

It is equivalent to seek for g solving

max
G∈R#G×r

R(G) = E
[
trace(GTH(X)G)(GTΣ(X)G)−1

]
where

H(x) = ∇Φ(x)
(
∇M(x)∇M(x)T

)
∇Φ(x)T ,

Σ(x) = ∇Φ(x)∇Φ(x)T , with Φ(x) = (Φ1(x), . . . ,ΦK (x)).

Maximization is solved with a quasi-Newton algorithm.

For linear feature maps, g(x) = A x, our procedure coincides with
active subspace method.
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Extension to nonlinear dimension reduction
Adaptive procedure based on {X(i),M(X(i)),∇M(X(i))}Ni=1?

Adaptive construction of g from {X(i),M(X(i)),∇M(X(i))}Ni=1

Empirical cost
We first replace R(G) by its empirical counterpart:

R̂N(G) = 1
N

N∑
i=1

trace(GTH(X(i))G)(GTΣ(X(i))G)−1.

For any 1 ≤ r ≤ d , we adapt the complexity of Gr = Gr to the
sample size N.

Matching Pursuit
We use a state-of-the-art [Migliorati, 2015, Migliorati, 2019]
reduced-set matching pursuit algorithm on downward-closed
polynomial spaces to build g .

Cross Validation
is used to know when to stop the iterations (before it overfits).
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Extension to nonlinear dimension reduction
Adaptive procedure based on {X(i),M(X(i)),∇M(X(i))}Ni=1?

Once g is computed, how to construct f ?

min
f ∈Fr

1
N

N∑
i=1

(
M(X(i))−f ◦g(X(i))

)2+
∥∥∇M(X(i))−∇f ◦ g(X(i))

∥∥2︸ ︷︷ ︸
recycle the gradients

As for G, we adapt the complexity of Fr = F r using reduced-set
matching pursuit algorithm on downward-closed polynomial spaces.

Benchmark algorithm (without dimension reduction):

min
v∈V

1
N

N∑
i=1

(
M(X(i))− v(X(i))

)2 +
∥∥∇M(X(i))−∇v(X(i))

∥∥2︸ ︷︷ ︸
recycle the gradients
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Extension to nonlinear dimension reduction
Numerical illustrations

Illustration: isotropic function

M(x) = cos
(√

x2
1 + . . .+ x2

d
)

µ = N (0, Id)
x ∈ R20

N = 100
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Extension to nonlinear dimension reduction
Numerical illustrations

Illustration: Borehole function

M(x) = 2πTM(HM−H`)
ln(r/rω)

(
1+ 2LTM

ln(r/rω )rω2Kω
+ TM

T`

) ,


x1 = rω ∼ N (0.1, 3 · 10−4)
x2 = r ∼ logN (7.71, 1.0112)
x3 = TM ∼ U(63 070, 115 600)
x4 = HM ∼ U(990, 1110)
x5 = T` ∼ U(63.1, 116)
x6 = H` ∼ U(700, 820)
x7 = L ∼ U(1120, 1 680)
x8 = Kω ∼ U(9 855, 12 045)
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Continuous lines: mean squared error E[(M(X)− f ◦ g(X))2], Dashed lines: cost
function J(g). The width of the shaded region corresponds to the standard deviation
over 20 experiments. 31/ 40



Extension to nonlinear dimension reduction
Numerical illustrations

Comparison with nonlinear (NL) kernel supervised PCA and NL
kernel dimension reduction.

Y =
(
M(X)
∇M(X)

)
∈ R1+d .

Kernel supervised PCA [Barshan et al., 2011] aims to maximize
the dependence between GTΦ(X) and Y measured with the
Hilbert-Schmidt norm of the cross-covariance operator restricted to
an arbitrary reproducing kernel Hilbert space (RKHS).
Kernel dimension reduction [Fukumizu et al., 2009] aims to
minimize the dependence between Y and Y|GTΦ(X) measured
with the Hilbert-Schmidt norm of the conditional covariance
operator restricted to some RKHS.
In our experiments, we used squared exponential kernels for both
κX and κY.
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Extension to nonlinear dimension reduction
Numerical illustrations
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Isotropic function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X),M(X)). Red lines: function
g(x) 7→ f ◦ g(x) with either N = 50 (top row) or N = 500 (bottom row). Here, f is a
univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Extension to nonlinear dimension reduction
Numerical illustrations
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Borehole function. Comparison of KS-PCA and NL-KDR with our method (GNLDR)
for m = 1. Blue points: 1000 samples of (g(X),M(X)). Red lines: function
g(x) 7→ f ◦ g(x) with either N = 30 (top row) or N = 300 (bottom row). Here, f is a
univariate polynomial of degree 6 and g a multivariate polynomial of degree 2.
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Conclusion, perspectives

Conclusion
I In this talk, we presented a trip around global sensitivity

analysis (via total Sobol’ indices) and (non)linear dimension
reduction.

I We proposed a two-step algorithm to build the approximation
M(x) ≈ f ◦ g(x) adaptively with respect to the input/output
sample. This algorithme takes into account gradient
information.

Perspectives
I It would be interesting to propose an optimal (or at least a

clever) sampling procedure.
I If Gr = {x 7→ UTx : U ∈ Rd×r orth. columns} and if

X ∼ N (0, Id), then C(X|Gr ) = 1.
Although assuming C(X|Gr ) <∞ is usual, e.g., in the analysis
of Markov semigroups or in molecular dynamics, proving it
remains an open challenge in more general settings.
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Perspectives
I It would be interesting to propose an optimal (or at least a

clever) sampling procedure.
I If Gr = {x 7→ UTx : U ∈ Rd×r orth. columns} and if

X ∼ N (0, Id), then C(X|Gr ) = 1.
Although assuming C(X|Gr ) <∞ is usual, e.g., in the analysis
of Markov semigroups or in molecular dynamics, proving it
remains an open challenge in more general settings.

35/ 40



Thanks

Thanks for your attention!

And a little bit of advertisement

36/ 40



Thanks

Thanks for your attention!

And a little bit of advertisement

36/ 40



Thanks

37/ 40



Thanks

Some references I

Barshan, E., Ghodsi, A., Azimifar, Z., and Jahromi, M. Z. (2011).
Supervised principal component analysis: Visualization, classification and
regression on subspaces and submanifolds.
Pattern Recognition, 44(7):1357–1371.

Bigoni, D., Marzouk, Y., Prieur, C., and Zahm, O. (to appear, 2022).
Nonlinear dimension reduction for surrogate modeling
using gradient information.
Information and Inference: A Journal of the IMA.
Constantine, P. G. and Diaz, P. (2017).
Global sensitivity metrics from active subspaces.
Reliability Engineering & System Safety, 162:1–13.

Da Veiga, S., Gamboa, F., Iooss, B., and Prieur, C. (2021).
Basics and Trends in Sensitivity Analysis: Theory and Practice in R.
SIAM.
Fukumizu, K., Bach, F. R., and Jordan, M. I. (2009).
Kernel dimension reduction in regression.
The Annals of Statistics, 37(4):1871–1905.

38/ 40



Thanks

Some references II

Hart, J. and Gremaud, P. (2018).
An approximation theoretic perspective of sobol’ indices with dependent
variables.
International Journal for Uncertainty Quantification, 8 (6).

Migliorati, G. (2015).
Adaptive polynomial approximation by means of random discrete least squares.
In Numerical Mathematics and Advanced Applications-ENUMATH 2013, pages
547–554. Springer.

Migliorati, G. (2019).
Adaptive approximation by optimal weighted least-squares methods.
SIAM Journal on Numerical Analysis, 57(5):2217–2245.

Sobol’, I. M. and Kucherenko, S. (2009).
Derivative based global sensitivity measures and the link with global sensitivity
indices.
Mathematics and Computers in Simulation, 79:3009–3017.

39/ 40



Thanks

Some references III

Zahm, O., Constantine, P. G., Prieur, C., and Marzouk, Y. M. (2020).
Gradient-based dimension reduction of multivariate vector-valued functions.
SIAM Journal on Scientific Computing, 42(1):A534–A558.

40/ 40


	Joint work with
	Introduction
	Total Sobol' indices from an approximation point of view
	Gradient-based linear dimension reduction
	Framework
	Poincaré-based upper bound
	Link with total Sobol' indices
	A numerical example

	Extension to nonlinear dimension reduction
	Exploiting the gradient M to construct the feature map g
	Adaptive procedure based on {X(i),M(X(i)),M(X(i))}i=1N?
	Numerical illustrations

	Conclusion, perspectives
	Thanks

