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“Variable importance and explainable AI” – Art Owen 

“Towards more general sensitivity estimates: Applications considering model structural 

uncertainties, grouping of parameters, and large-scale analyses” – Juliane Mai 

“Global Sensitivity Analysis: a novel generation of mighty estimators based on rank statistics” 
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“A kernel-based ANOVA decomposition: extending sensitivity indices and Shapley effects 

with kernels” – Sébastien Da Veiga 
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Keynote 1 

Variable importance and explainable AI 

Art Owen 

Department of Statistics, Stanford University, Stanford, CA, U.S.A 

Abstract: In order to explain what a black box algorithm does we can start by studying which 

variables are important for its decisions.  Variable importance is studied by making 

hypothetical changes to predictor variables.  Changing parameters one at a time can produce 

input combinations that are outliers or very unlikely.  They can be physically impossible, or 

even logically impossible.  It is problematic to base an explanation on outputs corresponding 

to impossible inputs.  We introduced the cohort Shapley (CS) measure to avoid this problem, 

based on Shapley value from cooperative game theory.  There are many tradeoffs in picking 

a variable importance measure, so CS is not the unique reasonable choice.  One interesting 

property of CS is that it can detect `redlining', meaning the impact of a protected variable on an 
algorithm's output when that algorithm was trained without the protected variable. 

This talk is based on recent joint work with Masayoshi Mase and Ben Seilert.  The opinions 

expressed are my own, and not those of Stanford, the National Science Foundation, or Hitachi, 

Ltd. 

2



Keynote 2 

Towards more general sensitivity estimates: Applications considering model 

structural uncertainties, grouping of parameters, and large-scale analyses 

Juliane Mai 

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, 

Canada 

Abstract: Sensitivities of model outputs are traditionally evaluated for the parameters specific 

to a given model of interest simulating a specific output, for example, streamflow. This 

presentation will focus on attempts leading to more general sensitivity estimates that hold for 

more than one specific model through (1) the inclusion of model structural uncertainties as 

parameters in the analysis, (2) grouping parameters such that sensitivities are not parameter 

specific but process specific, and (3) the deployment of these methods to large regions such 

that underlying patterns can be identified and transferred to locations that might have not been 

analysed before.  

These approaches have been recently applied to hydrologic models across North America 

evaluating their sensitivity to simulated streamflow. This presentation will describe the 

underlying methods applied and present results derived from analysing a blended hydrologic 

model structure, which includes not only parametric, but also structural uncertainties over more 

than 3000 basins across North America. Furthermore, it will be described how the results of the 

3000 basins were used to derive an approximation of sensitivities based on physiographic and 

climatologic data such that sensitivities can be estimated without the expensive analysis. The 

interactive website sharing detailed spatio-temporal inputs and results of this study will be 

shown. 
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Keynote 3 

Global Sensitivity Analysis: a novel generation of mighty estimators based on 

rank statistics 

Agnès Lagnoux 

Institut de Mathématiques de Toulouse, Université Toulouse 2 Jean Jaurès, Toulouse, France 

Abstract: In this talk, I present a new statistical estimation framework for a large family of 

global sensitivity analysis indices that we have proposed in a recent paper published in 2021. 

Our approach is based on rank statistics and uses an empirical correlation coefficient recently 

introduced by Chatterjee. We show how to apply this approach to compute not only the Cramér-

von-Mises indices, directly related to Chatterjee's notion of correlation, but also first-order 

Sobol' indices, general metric space indices and higher-order moment indices. We establish the 

consistency of the resulting estimators and demonstrate their numerical efficiency, especially 

for small sample sizes. In addition, we prove a central limit theorem for the estimators of the 

first-order Sobol' indices. 
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Keynote 4 

A kernel-based ANOVA decomposition: extending sensitivity indices and 

Shapley effects with kernels 
 

Sébastien Da Veiga 

Safran Tech, Paris, France 

 

Abstract: Global sensitivity analysis is the main quantitative technique for identifying the most 

influential input variables in a numerical model. 

In particular when the inputs are independent, Sobol’ sensitivity indices attribute a portion of 

the output variance to each input and all possible interactions in the model, thanks to a 

functional ANOVA decomposition. 

On the other hand, moment-independent sensitivity indices focus on the impact of inputs on the 

whole output distribution instead of the variance only, thus providing complementary insight 

on the inputs/output relationship. But they do not enjoy the nice decomposition property of 

Sobol’ indices and are consequently harder to analyze. 

In this talk, we introduce two moment-independent indices based on kernel-embeddings of 

probability distributions and show that the RKHS framework makes it possible to exhibit a 

kernel-based ANOVA decomposition. 

This is the first time such a desirable property is proved for sensitivity indices apart from Sobol’ 

ones. With dependent inputs, we also use these new sensitivity indices as building blocks to 

design kernel-embedding Shapley effects which generalize the traditional ones. 

Several estimation procedures are discussed and illustrated on test cases with various output 

types such as categorical variables and probability distributions. All these examples show their 

potential for enhancing sensitivity analysis with a kernel viewpoint. 
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Keynote 5 

Understanding the modelling process and model use 
 

Samuele Lo Piano 

University of Reading, Reading, UK 

 

Abstract: Models are used to represent systems and their possible evolutions, gaining insights 

to be translated into decisions on the real system they aim to represent. The steps of model 

development and use are especially critical when these are used at the policy-making interface. 

It is not infrequent that the model replaces the system modelled as locus of attention and that 

the use of a given model may be extrapolated well beyond the function it has initially been 

conceived for. In these settings, uncertainty and sensitivity analysis, however useful to draw 

inference on model’s robustness and stability, may be insufficient to acknowledge these kinds 

of issues leading to potentially regrettable decisions. In this contribution, I will discuss the 

approaches proposed for thorough scrutiny of the modelling activities and their use at the 

science-policy interface. I will conclude by examining practical examples in the context of 

recent initiatives where efforts have been put forth to mainstream these practices and 

approaches.  
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Keynote 6 

(Non)linear dimension reduction of input parameter space using gradient 

information 
 

Clémentine Prieur 

Université Grenoble Alpes, Grenoble, France 

 

Abstract: Many problems that arise in uncertainty quantification, e.g., integrating or 

approximating multivariate functions, suffer from the curse of dimensionality. The cost of 

computing a sufficiently accurate approximation grows indeed dramatically with the dimension 

of input parameter space. It thus seems important to identify and exploit some notion of low-

dimensional structure as, e.g., the intrinsic dimension of the model. A function varying 

primarily along a a low dimensional manifold embedded in the high-dimensional input 

parameter space is said of low intrinsic dimension. In that setting, algorithms for quantifying 

uncertainty focusing on the most relevant features of input parameter space are expected to 
reduce the overall cost. Our presentation goes from global sensitivity analysis to (non)linear 

gradient-based dimension reduction, generalizing the active subspace methodology. 
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Speaker: Changcong Zhou 

Global Sensitivity Analysis Based on Active Subspaces 

and Kriging 
 

 Changcong Zhou, Zhuangke Shi 

Department of Engineering Mechanics, Northwestern Polytechnical 

University, Xi’an 710072, China, changcongzhou@nwpu.edu.cn 
Sergei Kucherenko 

Imperial College London, London, SWT 2AZ, UK,  

s.kucherenko@imperial.ac.uk 

 

Global sensitivity analysis (GSA) measures the effects of input variables on the model 

output by considering their whole ranges of uncertainty. Many GSA measures have been 

developed over the past decades, among which the most popular is the variance based method 

of Sobol’ sensitivity indices [1]. Another popular among practitioners measure is the 

derivative-based global sensitivity measure (DGSM) [2]. Sobol’ and Kucherenko [3] showed 

that there is a link between the DGSM and variance-based sensitivity indices in a form of 

inequality relationship.  

Active subspaces have recently become a new valuable method among tools of GSA [4]. It 

is based on the observation that model output often depends only on a limited number of 

directions in the input space. Each direction corresponds to a linear combination of the original 

input variables, which is referred to as the active subspace. The active subspace can be 

identified by performing the eigenvalue decomposition of the covariance-like matrix of 

response gradients. The original input variables can be mapped into the active subspace and the 

input-output model can be set in the active subspaces. Once the model in the active subspace 

becomes a low-dimensional one, it is much easier to build an accurate surrogate model and to 

overcome the “curse of dimensionality”. We propose a framework based on the application of 

active subspaces followed by Kriging [5] for building a surrogate model in the reduced space 

and subsequent computation of three types of GSA measures, namely DGSM, activity score 

and Sobol’ total effect index. The proposed approach includes the following general steps: Step 

1: Generate the full sample set; Step 2: Estimate the covariance-like matrix and DGSM; Step 3: 

Perform the eigenvalue decomposition, identify the active subspace, and compute the activity 

score; Step 4: Build the Kriging surrogate model by an adaptive procedure in the active 

subspace. Step 5: Estimate the total effect index with the Kriging model. 

As an example we consider a high-dimensional quadratic model: y=(∑cixi)
2 (i=1,2,…,100). 

Here xi follows the uniform distribution on [0,1], the values of coefficients ci are given in Table 

1. Obviously, the importance of input variables depends on the coefficients: a larger coefficient 

means higher importance.  

Table 1 Values of the coefficients 

c5 c15 c25 c35 c45 c55 c65 c75 c85 c95 The rest 

5 15 25 35 45 55 65 75 85 95 1 

The eigenvalues plotted on a logarithmic scale are shown in Fig. 1. The large gap between 

the first and the second eigenvalue implies that there exists one-dimensional active subspace. 

The Kriging model is built in the active subspace. The training sample points and the Kriging 

model in the one dimensional active subspace are shown in Fig. 2(a). For comparison, the 

Kriging model is also built in the two-dimensional active subspace as shown in Fig. 2(b). It can 

be noticed that the Kriging model built in one-dimensional active subspace is sufficient to 

capture the general behavior of output. The three GSA indices of all the input variables 

obtained by the proposed approach (in one-dimensional active subspace) as well by the 

straightforward Monte Carlo simulation (MCS) are presented in Fig. 3. The results obtained by 

the proposed approach agree well with those obtained by MCS, which proves that the proposed 
8
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approach is applicable in the high-dimensional case. Normalized values of DGSM and activity 

score are practically the same as the values of total effect indices. Computed GSA indices have 

successfully identified the importance of the input variables as follows: 

x95>x85>x75>x65>x55>x45>x35>x25>x15>x5>other inputs. 

 
Fig. 1. The eigenvalues 

 
(a) One-dimensional active subspace        (b) Two-dimensional active subspace  

Fig. 2. The training samples and Kriging model in the active subspace 

 
Fig. 3. Normalized GSA indices  

(For a sensitivity index i , the normalized value is expressed as 2 1/2/ ( )i i i  =   

[1] I.M. Sobol’, Global sensitivity indices for nonlinear mathematical models and their Monte 

Carlo estimates. Math. Comput. Simul., 55: 271-280, 2001. 

[2] S. Kucherenko, M. Rodriguez-Fernandez, C. Pantelides, N. Shah, Monte Carlo evaluation 

of derivative-based global sensitivity measures, Reliab. Eng. Syst. Saf., 94: 1135–1148, 

2009. 

[3] I.M. Sobol’, S. Kucherenko, Derivative based global sensitivity measures and their link 

with global sensitivity indices, Math. Comput. Simul., 79: 3009–3017, 2009. 

[4] P.G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in 

Parameter Studies, SIAM, Philadelphia, 2015. 

[5] H. Liu, J. Cai, Y-S Ong, An adaptive sampling approach for Kriging metamodeling by 

maximizing expected prediction error, Comput. Chem. Eng., 106: 171–182, 2017. 
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Speaker: Sergei Kucherenko 

Comparison of Active Subspaces and Global Sensitivity 

Measures for Problems with Rotations and Dependent 

Variables 

Sergei Kucherenko 

Imperial College London, London, SWT 2AZ, UK, 

s.kucherenko@imperial.ac.uk

Peter Yatsyshin 

The Alan Turing Institute, UK, pyatsyshin@turing.ac.uk 

Nilay Shah 

Imperial College London, London, SWT 2AZ, UK, 

N.Shah@imperial.ac.uk

Often the lower-dimensional subspaces that impact estimates of uncertainty are efficiently 

described by combinations of parameters. By moving beyond identifying directions aligned with 

the axes of the parameter space, significant dimension reduction can be achieved. Ideally, 

sensitivity analysis (SA) should identify directions that are most influential regardless of their 

orientation. Active subspaces (AS) is a method which identifies important directions in the 

parameter space and allows dimension reduction (Constantine Error! Reference source not 

found.).  

In this work we compared the AS method with variance based and DGSM methods. Consider 

a nonlinear numerical model 𝑓(𝒙)  ∈ 𝐿1, 𝒙 ∈ ℝ𝑛 distributed according to pdf 𝑝(𝒙). Compute the

symmetric positive semidefinite matrix 𝑪 = 𝑬[𝛁𝒇𝛁𝒇𝑻] and its eigenvalue decomposition: 𝑪 =

𝐖𝚲𝐖𝐓, where  𝚲 = 𝐝𝐢𝐚𝐠(𝛌𝟏, … 𝛌𝐧), 𝛌𝟏 ≥ ⋯ ≥ 𝛌𝐧 are eigenvalues, and 𝐖 is the orthogonal

matrix of the corresponding eigenvectors forming the basis of ℝn. The main idea of the AS method

is to find a partition 𝐖 = 𝐖𝟏 + 𝐖𝟐, where 𝐖𝟏 is formed by the eigenvectors of the top 𝒌 

eigenvalues (where 𝒌 ≪ 𝒏), such that 𝒇(𝒙) ≈ 𝒈(𝒚), where 𝐲 = 𝐖𝟏
𝑻𝐱 and  𝒚 ∈ ℝ𝑘. The span of

the top 𝒌 eigenvectors of 𝑪 is called the “active subspace. It can be shown that optimal (in a certain 

sense) 𝒌 corresponds to the largest gap in the spectrum of 𝑪 [1]. Notice that unlike the global 

sensitivity analysis techniques, where subsets of input parameters that can be neglected are 

identified, the active spaces approach seeks to find important linear combinations of all input 

parameters, which span the “active subspace”. Perturbing the inputs along the important directions 

causes greater change in the prediction, on average, than perturbing along the unimportant ones. 

The active variables are the linear combinations of the input parameters with weights from the 

important eigenvectors. We note that DGSM are the diagonal elements of Matrix 𝑪 (1). Variance 

based sensitivity indices measure the proportion of the variance attributed to each parameter while 

the eigenvector identifies an important direction in the parameter space, where “importance” is 

measured by the eigenvalue. In other words, perturbing x along W1 changes f (x) the most, on 

average. 

We consider the Ishigami function 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥1 + 𝑎 𝑠𝑖𝑛2 𝑥2 + 𝑏𝑥3
4 𝑠𝑖𝑛 𝑥1, −𝜋 ≤ 𝑥𝑖 ≤

𝜋, 𝑖=1, 2, 3, a=7, b=0.1. GSA gives the following values of 𝑆𝑖
𝑡𝑜𝑡 = {0.55, 0.44, 0.24} and 𝐺𝑖 =

{305, 967, 433 }. Presented results for DGSM show that the second variable is the most 

important, with the third variable being second most important. We note, that analysis based on 
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Sobol’ indices presents a different picture, namely ranking of inputs in the order of importance is 

1, 2, 3. Applying AS  we find the eigenvalues: =[239.32; 121.49; 18.51]. We consider the first 

two eigenvalues to be dominant, hence k=2. 𝐖𝟏
𝑻 corresponding to these two eigenvalues 𝐖𝟏

𝑻 =

[
0 1 0
0 0 1

]: AS lies along the second x2 and the third x3 direction which is in agreement with 

importance of inputs derived from using DGSM. In the second scenario we consider only the first 

eigenvalue to be dominant, k=1. It allows a 1D approximation of the original 3D function. 

Comparison of the fist and the second scenarios reveals that the second scenario in which 

dimension is reduced to 1 is sufficient to approximate the original function with good accuracy.  

Consider a model in transformed coordinates  𝒙′ = �̂�𝒙, where the rotation matrix �̂� =

 [
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃) 0
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 0

0 0 1

]. This is transformation in two dimensions. It rotates the ( 1x , 2x ) axes 

clockwise into the ( 1 'x , 
2 'x ) axesConsider the Ishigami function 𝒇(�̂�𝒙) = 𝝋(𝒙) with rotation on

 and assume that the user is agnostic with regards to transformation, that is function 𝝋(𝒙) is

analysed in the original coordinates. From the values of 𝑆𝑖 = {0.08, 0.06, 0.0}, 𝑆𝑖
𝑡𝑜𝑡 =

{0.73, 0.72, 0.22} and 𝐺𝑖 = {37, 38, 24 }, no certain conclusions can be made as it seems that the

first and the second inputs are equally important through interactions. Neither variance based nor

DGSM based global sensitivity analysis is able to identify critical directions.

We note that 𝜵𝒙𝒇(�̂�𝒙) = �̂�𝜵𝒙′𝒇(𝒙′), then 𝑪𝑹 = ∫ 𝜵𝒙𝒇𝜵𝒙𝒇𝑻 ⅆ𝒙 =  �̂�𝑪�̂�𝑻. Here 𝑪 = 𝐖𝚲𝐖𝐓

is a matrix of the model without rotation. Applying the AS methodology we get 𝒚 = 𝐖𝟏
𝑻�̂�𝑻𝒙 =

(�̂�𝐖𝟏)𝑻𝒙. Hence all the results for AS are exactly the same as in the case with no rotation, however

the active directions are now given by the matrix �̂�𝐖𝟏 and a low-dimensional approximation of 

𝒇(𝒙) ≈ 𝒈((�̂�𝐖𝟏)𝑻𝒙). Scatter diagrams of the output versus active and non active directions (not

presented here) show that the AS method was capable of finding AS in which the scatter diagrams 

look exactly the same as in the case of no rotation. We can conclude that traditional global 

sensitivity analysis (GSA) methods such as the variance based method of Sobol’ sensitivity indices 

[2] or DGSM [3] are unable to identify orthogonal directions and rank parameters in active

subspaces rather than in original directions.

We also generalised the AS methodology for the case of models with dependent variables and 

compared the generalised AS methodology with that of generalised Sobol’ indices [4]. 

[1] P.G. Constantine, Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter

Studies, SIAM, Philadelphia, 2015.

[2] A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto, Sensitivity Analysis in Practice, Wiley

(eds.), 2004.

[3] I.M. Sobol’, S. Kucherenko, Derivative based Global Sensitivity Measures and their link

with global sensitivity indices, Mathematics and Computers in Simulation, 79 (10), 3009-

3017, 2009.

[4] S. Kucherenko, S. Tarantola, P. Annoni. Estimation of global sensitivity indices for models

with dependent variables, Computer Physics Communications, 183, 937–946, 2012.
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Speaker: John Barr 

Kernel Methods for Global Sensitivity Analysis 

 

John Barr1 and Herschel Rabitz2 

1Department of Chemistry, Princeton University, United States of America, jbarr@princeton.edu 

2Department of Chemistry, Princeton University, United States of America, hrabitz@princeton.edu 

 

Global Sensitivity Analysis (GSA) aims at quantifying the influence of the inputs on an output 

defined by an input-output system due to changes of the input variables over their entire domain.  

The evolution of global sensitivity analysis (GSA) in recent years has focused on developing 

new tools that broaden its scope of applications.  These developments have included introducing 

new sensitivity measures for certain types of outputs, lifting restrictions on assumptions of 

previous approaches (such as input independence), and developing goal-oriented methods that 

define classes of sensitivity measures capable of analyzing different aspects of how an input can 

influence the output distribution [1, 2]. 

 

Kernel-based procedures have enjoyed considerable success in areas such as machine learning 

and pattern analysis, and naturally can be extended to GSA. The practicality of these techniques 

extends to solving difficult non-parametric problems by embedding data points into higher 

dimensional reproducing kernel Hilbert spaces (RKHSs), allowing for non-linear algorithms 

based upon traditional linear approaches. These concepts have been generalized to embed 

probability distributions into RKHSs, producing powerful methods for dealing with higher order 

statistics [3].  Recently, the embedding of probability distributions into RKHS has been applied 

to define unique GSA procedures [1,4]. 

 

In this work we propose a new class of GSA measures based on the embedding of the joint 

probability distribution of a system’s output into a RKHS, which has several key advantages 

over many traditional sensitivity techniques.  Specifically, the proposed methodology introduces 

a unified class of sensitivity measures that are well defined for an arbitrary type of output, 

computationally feasible for high-dimensional outputs, do not require input variable 

independence, and have the capacity to be goal-oriented such that the practitioner can change the 

sensitivity indicator to select the features of the output distribution that are deemed important.   

12



This new kernel-based technique encapsulates measures that are both moment-independent and 

moment-based.  This advance includes the introduction of novel GSA metrics as well as showing 

that certain previously proposed GSA measures, such as the variance-based indicators, are 

special cases of the kernel-based procedure.  This new GSA procedure is tested against multiple 

benchmark applications to highlight the broad-range systems it can be applied to such as systems 

with high-dimensional or categorical outputs.   

 

Building on this research, future studies will focus on two directions.  The first concerns the 

kernel-selection process and how an optimal kernel-metric can be chosen.  The second will focus 

on new algorithms to increase numerical efficiency so this methodology can be applied in 

regimes where data sampling can be expensive. 

 

References 

  

[1] Barr, J. and Rabitz, H.  A Generalized Kernel Method for Global Sensitivity Analysis.  SIAM/ASA 

Journal on Uncertainty Quantification, (Forthcoming, Accepted). 

[2] Borgonovo, E. and Plischke, E. Sensitivity analysis: a review of recent advances. European Journal 

of Operational Research, 248 (3), pp. 869-887, 2016. 

[3] Smola, A., Gretton, A., Song, L. and Schölkopf, B. A Hilbert space embedding for 

distributions. International Conference on Algorithmic Learning Theory, pp. 13-31. 2015. 

[4] Da Veiga, S. Global sensitivity analysis with dependence measures. Journal of Statistical 

Computation and Simulation, 85(7), pp.1283-1305. 2015. 
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Speaker: Franziska Henze

Dynamic Sampling Strategy for Morris’ Method of El-
ementary Effects

Franziska Henze
Institute of Measurement and Control Systems, Karlsruhe Institute of Technology,

Germany, franziska.henze@kit.edu

Markus Rußer
AUDI AG, Germany and University of Applied Sciences Kempten, Germany,

markus.russer@audi.de and markus.russer@stud.hs-kempten.de

Dennis Faßbender
AUDI AG, Germany, dennis.fassbender@audi.de

Christoph Stiller
Institute of Measurement and Control Systems, Karlsruhe Institute of Technology,

Germany, stiller@kit.edu

Stefan-Alexander Schneider
Faculty of Electrical Engineering, University of Applied Sciences Kempten, Germany,

stefan-alexander.schneider@hs-kempten.de

Highly automated driving functions are developed to navigate a driverless vehicle through
traffic. Unfortunately, understanding planning decisions and errors becomes more and
more difficult even for function developers themselves [7]. Therefore, developing frame-
works for transparent explanations will be crucial for the future success of this new tech-
nology [5, 10, 11]. For this, we use sensitivity analysis (SA) methods to identify the
parameters that are most influential for the decision [6] and that we expect to build the
basis for future explanations. Since updating the plan usually happens at a high frequency
(∼ 10 Hz [1, 8]), the SA is required to be computationally effortless. Morris’ method of
elementary effects is a one-factor-at-a-time approach [9], which is expected to require
only a few sample evaluations and therefore has a manageable computational effort while
providing sufficient information for our cause [4]. However, previous work showed that
for analyzing planning algorithms with many inputs, a sample size of M ∈ {4, . . . , 10}
may not be sufficient to identify all relevant information [3, 6]. Increasing the sample size
M ≥ 100 is one option, but it comes at the cost of evaluating unnecessarily many samples
in simple situations. Therefore, we propose a dynamic stop criterion (DSC) to adapt the
number of samples to the complexity of the system. We first shortly recapitulate Morris’
method and define the DSC. Afterwards, we apply it to an example, before we discuss
possibilities and limitations.
Morris’ method of elementary effects is based on characterizing the distribution of gradi-
ent approximations of a function at random points [9]: For a function f : Ω ⊆ Rk → Rm
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(k,m ∈ N), the directional derivative along the unit vector ei ∈ Rk is approximated for a
set of random samples {x̃j}Mi

j=1, ∆i ∈ R by

di(x̃j) :=
f(x̃j + ∆iei)− f(x̃j)

∆i

(i ∈ {1, . . . , k}).

Campolongo et al. [2] suggest using the sample mean of {|di(x̃j)|}Mi
j=1 defined by

µ∗i,Mi
:=

Mi∑
j=1

|di(x̃j)|
Mi

, µ∗M =
(
µ∗1,M1

, . . . ,µ∗k,Mk

)
∈ Rm×k, M = (M1, . . . ,Mk)T ∈ Nk,

with componentwise absolute value |·|, to classify an input i as relevant (
∥∥µ∗i,Mi

∥∥ � 0)

or irrelevant (
∥∥µ∗i,Mi

∥∥ ≈ 0). Touzani et al. [12] introduce a global error criterion to
determine if the sensitivity index of a quantitative derivative-based global sensitivity
measure (DGSM) has converged. We modify it for the qualitative SA measure µ∗i,Mi

to
iteratively adapt the number of samples to the classification difficulty, but keep the main
idea of averaging the relative deviations over the past 10 iterations [12]. To construct an
iterative process over sample size M , we define a component-wise relative error by

ε2i,Mi
:=

1

10

10∑
l=1

∥∥µ∗i,Mi−l − µ
∗
i,Mi

∥∥2∥∥µ∗i,Mi

∥∥2
to evaluate the convergence of the SA measure for input i, and a global error measure

ε2M :=
1

k

∑
i∈A

ε2i,M +
∑

i∈{1,...,k}\A

ε2i,Mi

 , Mi = M for i ∈ A ⊆ {1, . . . , k}, else Mi < M

to check for convergence after M iterations and increase M by 1 otherwise. To separate
the active inputs A ⊆ {1, . . . , k} from the inputs {1, . . . , k} \A that we can classify after
evaluating only a few samples, we define the iterative DSC for constants κstop > κact > 0
as

ε2i,M ≤ κact ⇒ A := A \ {i},Mi := M, (1)

ε2M ≤ κstop ⇒ stop calculation after M iterations. (2)

To demonstrate the proposed criterion, we use the g-function

g : [0, 1]k → R, g(x) :=
k∏

i=1

gi(xi) =
k∏

i=1

|4xi − 2|+ ai
1 + ai

with the same k = 6 parameters [a1, . . . , a6]
T = [0, 0.2, 0.9, 9, 50, 99]T as in [3] (m = 1),

where small values ai indicate large influence. We now compare the results obtained
with the DSC (∆i = 0.25 for all i ∈ {1, . . . , 6}, Mmin = 11, κact = 0.5κstop) to the
ones of a simulation similar to [3] (i.e., Mi = 10, ∆i = 0.25 for all i ∈ {1, . . . , 6})
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Figure 1: Analysis of global DSC bound κstop for g-function (m = 1, [3]). Confidence
intervals (CIs) are calculated from bootstrap resampling with 103 bootstrap replicates as
in [3]. Dashed lines give results calculated according to [3] (without CIs). Colors
indicate inputs: a1 = 0, a2 = 0.2, a3 = 0.9, a4 = 9, a5 = 50, a6 = 99.

and discuss parameter κstop. Fig. 1a shows the SA measures µ∗i,Mi
for all inputs i ∈

{1, . . . , 6} depending on the constant κstop: The ones calculated according to [3] (dashed
lines) deviate strongly from the ones calculated with DSC (e.g., a2) and the confidence
intervals decrease with decreasing κstop, indicating a better precision for the calculations
with DSC (cf. Figs. 1a, 1b). Further investigations show that this holds also for the
sample mean and sample variance proposed as SA measures by Morris [9]. As expected,
this comes at the expense of additional sample evaluations, cf. Fig. 1c. However, for
κstop ≤ 10−2 the component-wise criterion (1) stops evaluating samples for some inputs
earlier than for others (e.g., i ∈ {1, 3, 5}, A = {2, 4, 6} for κstop = 5 · 10−3). Compared
to the straightforward approach presented in [3], which gives already reasonably good
classification results, the proposed improvements for the sampling strategy seem expensive
without significant improvements. However, as stated therein, choosing a sample size of
M ∈ {4, . . . , 10} gives only bad estimates of SA measures such as µ∗, which is problematic
whenever an automatic classification based on a threshold c > 0 is used: For ‖µ∗‖ ≈ c,
the relevance classification will naturally be unsafe for small sample sizes. With the
DSC, one can improve the estimates specifically for the inputs with large fluctuations,
thus gaining more reliable qualitative information, e.g. on the predominant sign of the
gradient approximations (positive or negative sample mean, cf. [9]), while maintaining
the overall number of samples at a low level. This is especially interesting for applications
with many inputs k, where some are easy to classify without evaluating too many samples,
while others need more investigation, e.g., because they are only weakly influential.
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Shapley effects are attracting attention as sensitivity measures. With the value function
being the conditional variance, these effects account for the individual and higher order
sensitivity effects. However, one of the issues associated with their use is computational
cost. We present new algorithms [1] that offer major improvements for the computation
of Shapley effects, reducing computational burden by several orders of magnitude with
respect to currently available implementations [3]. With these new algorithms, one may
estimate also generalized (Shapley-Owen) effects for interactions.

The Shapley value is a concept from cooperative game theory. One considers a game with
d players. The Shapley value is then the quantity that indicates the worth of forming
coalitions and the expected payoff for each player, attributing a fair share of the grand total
to each of the players. Generally, one defines the coalition worth function val : 2d → R
with val(∅) = 0, attributing a sum of payoffs to a group of players. Here 2d is the powerset
(set of subsets) of d = {1, 2, . . . , d}.

In the context of sensitivity analysis [2], one regards as players the inputs to a simulation
model g: x 7→ y, Rd → R and the variance of the conditional model output they explain
as the value function, val(α) = V[E[Y |Xα]]. Here Xα is the random vector obtained from
the random input X, selecting only the coordinates indexed by α. One main reason for
the interest towards Shapley effects is that they remain interpretable also in the presence
of dependent inputs or domain irregularities such as holes.

The Shapley value is uniquely characterized by four axioms, Pareto-efficiency, symmetry,
linearity, and null-player property. We take advantage from the following alternative
definitions of the Shapley value,

Φi(val) =
1

d

∑
α:i̸∈α

(
d− 1

|α|

)−1

mar(α, i), mar(α, i) = val(α ∪ {i})− val(α)

Φi(val) =
1

d

∑
α:i∈α

(
d− 1

|α| − 1

)−1

(val(α)− val(∼ α)) , ∼ α = d \ α,

Φi(val) =
∑
α:i∈α

mob(α)

|α|
, mob(α) =

∑
β⊂α

(−1)|α|+|β| val(β).
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While the first one uses marginal contributions, the second one uses a balanced value
function, including both the value of a coalition and the value of its anti-coalition. The
third one makes use of the Möbius inverse. All formulas visit the 2d − 1 non-empty index
combinations.

A first algorithmic refinement to compute variance-based Shapley effects via the first
definition is obtained by

1. using a pick-and-freeze design instead of a brute-force double loop;

2. using a duality result for obtaining two estimators at the same computational costs;

3. estimating conditional variances via Sobol’/Saltelli and Jansen formulas;

4. Using a quasi Monte-Carlo design for improved convergence compared to a crude
Monte-Carlo design.

This approach already achieves a notable speedup. However, there is room for improve-
ments by exploiting the alternative definitions. From the second definition, the value
function of any subset α is contributing to Shapley effect i either by a positive or a
negative weight, depending on whether i ∈ α or not. Moreover, under independence,
the computation of both val(α) and val(∼ α) may use the same pick-and-freeze design,
halving the number of evaluations.

As the Möbius inverses used in in the third definition are formally equivalent to the
functional ANOVA decomposition terms, this definition offers a viable alternative for
computing the Shapley effects. However, this requires a quick way of solving for the
Möbius inverse. Our results show that this can be performed efficiently.

We present deterministic algorithms for efficiently computing Shapley effects, computing
all possible coalition-worth value functions. Stochastic algorithms (with a polynomial
runtime) use a random subset of m permutations instead of the d! ones. Some of the
ideas presented here may also accelerate these stochastic algorithms.
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We are interested in identifying the input variables that drive model output(s) in a domain

of interest and/or govern speci�c model behaviors de�ned via weight functions such as

outputs belonging to a given cluster from any classi�cation approach (e.g., [3; 2; 7]). We

then investigate uncertainty exploration of speci�c model behaviors using the multivariate

weighted distribution theory, which is well-suited for altering initial distribution of inputs

or output(s) (e.g., [6]). Formally, if we use ρ for the initial PDF of d variables X, w :

Rd → R+ for a weight function, the weighted PDF is given by

ρw(x) :=
w(x)

E [w(X)]
ρ(x) . (1)

Since the weighted variables Xw (i.e., variables having ρw(x) as PDF) may be dependent,

an appropriate measure of association between inputs and the target outputs related to

speci�c model behaviors is needed. The recent works in [5; 4] make use of dependency

models to provide dependent generalized sensitivity indices (dGSIs) that account for the

dependency structure of inputs. For the weighted variables, a dependency model of Xw

is given by

rj : Rd → Rd−1, Xw
∼j = rj

(
Xw

j ,U
)
, (2)

where rj is a known function, U ∼ U (0, 1)d−1 and Xw
j is independent of U.

Recall that Sobol' indices and dGSIs are based on the variance of sensitivity function-

als (SFs), which contain the information about the contribution of inputs. Thus, Sobol'

indices and dGSIs are su�cient to assess the e�ects of inputs when SFs are normally

distributed. When a statistical test revels that SFs do not follow a Gaussian distribu-

tion, Sobol' indices and dGSIs are a second-order moment approximation of an adequate

measure of association. Namely, the �rst-order and total dependent SFs of Xw
j are given

by

f fo
j

(
Xw

j

)
:= EU

[
f
(
Xw

j , rj
(
Xw

j ,U
))]
− EXw

j ,U

[
f
(
Xw

j , rj
(
Xw

j ,U
))]

; (3)

f tot
j (Xw) := f

(
Xw

j , rj
(
Xw

j ,U
))
− EXw

j

[
f
(
Xw

j , rj
(
Xw

j ,U
))]

. (4)
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In this abstract, we propose kernel-based sensitivity indices as an adequate measure of

association using the characteristic kernel corresponding to the distribution of SFs. To

that end, we use K : X × X → R for a kernel de�ned on X := supp(f(Xw)) and

corresponding to the feature map φ : X → F , that is, K(y,y′) = 〈φ(y), φ(y′)〉F ([1]).

De�nition 1 For a symmetric, positive de�nite kernel with E
[
K
(
f(Xw), f(Xw′

)
)]
≤ ∞,

the �rst-order and total kernel-based SIs of Xw
j are de�ned by

kSj :=
E
[
K
(
f fo
j (Xw

j ), f
fo
j (Xw′

j )
)]

E [K (f(Xw), f(Xw′))]
, (5)

kSTj
:=

E
[
K
(
f tot
j (Xw), f tot

j (Xw′
)
)]

E [K (f(Xw), f(Xw′))]
. (6)

Proposition 1 Let Xw′
be an independent copy of Xw and K(y,y′) =

(
yTy′

)2
.

(i) For independent inputs and a real-valued function f , Sobol' indices are given by

Sj =
√
kSj, STj

=
√
kSTj

.

(ii) For any input distribution and a vector-valued function f , the second-type dGSIs are

dGSI2,Mj =
√
kSj, dGSI2,MTj

=
√
kSTj

.

In conclusion, a quadratic kernel-based SIs are equivalent to i) Sobol' indices for ranking

independent inputs and ii) dGSIs for ranking inputs. For non-Gaussian SFs the choice of

the kernel or the feature map should be based on the distribution structure of SFs.
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Context: partitioning the output space
The use of partition of the model output space is a very convenient way to define behaviors
of a model which scales to any dimension of the output space and can be powerful to give
interpretable characterization of model properties. Considering partitions of the output
space in relation to parameter sensitivity comes from the Regional Sensitivity Analysis
(RSA) approach of Spear and Hornberger [1]. This subject has lately gained interest
through two research directions: i) its application in the context of reliability engineering
to characterize parameter sensitivity in relation to a critical domain of the output space
and using sensitivity measures compatible with rare events (Target SA, [2]), ii) its ap-
plication in combination with a clustering procedure in order to characterize parameter
sensitivity in relation to the dominant behaviors of the output space (Cluster-based GSA,
[3]).

Optimized sensitive partitioning: principle
We introduce here a new perspective on these different approaches. Instead of trying to
a priori characterize a target region of the output space, we propose to optimize the
partitioning in order to reveal the partition of the output space the most sensitive to
the variations of a given input, i.e. the most explained by the variations of this input. We
named this approach an optimized sensitive partitioning. It results in associating
to each input factor an optimized partition of the output space and a normalized score
characterizing the influence of the parameter in driving the output from one region of the
partition to the complementary one (see Fig. 1). The optimized sensitive partitioning
approach thus aims to find for any model input the two most contrasted model behaviors
(defined as regions of the output space) that are influenced by this input.
Two main ingredients are required to define an optimized sensitive partitioning: first a
sensitivity measure relating the sensitivity of an input to a partition of the output space,
second an optimization procedure that looks for a partition that maximizes the sensitivity
score.

Sensitivity measures and optimization algorithms
We propose to use the cluster-based indices defined in [3]. They are defined as Sobol’
indices (first order, or total) of the membership functions (MF) associated to a clustering
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of the output space. MFs are typically defined in [0, 1] and characterize the degree of
membership of any point of the output space to a given cluster. We introduce two opti-
mization algorithms dedicated to the case of a 2-partition problem. In this case, we look
for the binarization (C∗, C̄∗) of the output space that maximizes a given cluster-based
index.

• The first algorithm is based on a exhaustive search on a set of patches obtained
using a first clustering of the output space. It can be applied with any sensitivity
measure.

• The second one targets specifically first order indices and uses a property specific to
the optimization with this criterion: the fact that two patches having very correlated
histograms associated to the distribution of Xi|Y ∈ C∗ belong to the same region
of the optimal partition (C∗, C̄∗). Histogram correlation can thus trigger efficiently
the clustering of patches and allows to reach finer resolutions in the results.

Figure 1: Principle of Optimized Sensitive Partitioning as opposed to Target SA and cluster-based GSA
(here in the case of a partitioning into two regions).

First Results
We present the application of the method on different examples.

• First, a 1d example f(X1, X2) = (sign(X1) · |X2|), with X1 and X2 having uniform
distributions in [−1, 1] is considered. This example is used for validation purpose
as the optimization problem in this case can be solved analytically.

• The two numerical algorithms are then illustrated on a 2d toy model allowing a 2d
representation of the optimized partition and on a model with dynamic outputs to
show the interest of the approach.

[1] Spear, R. C. and Hornberger, G. M. Eutrophication in peel inlet—II. Identification of critical uncertainties via gener-
alized sensitivity analysis. Water research, 14(1), 43-49,1980.

[2] Marrel, A. and Chabridon, V. Statistical developments for target and conditional sensitivity analysis: application on
safety studies for nuclear reactor. Reliability Engineering & System Safety, 107711, 2021.

[3] Roux, S., Buis, S., Lafolie, F. and Lamboni, M. Cluster-based GSA: Global sensitivity analysis of models with temporal
or spatial outputs using clustering. Environmental Modelling & Software, vol. 140, p. 105046, 2021.
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Joint inference for the total sensitivity indices, the components of the Sobol-Hoeffding de-
composition and the Shapley indices is performed. The inference for the Shapley indices
follows directly from the inference for the components of the Sobol-Hoeffding decomposi-
tion, which is based in Möbius’ inversion formula. Joint asymptotic normality, and explicit
formulas for the asymptotic variance-covariance matrices, are obtained. This allows to
compute exact asymptotic confidence intervals for the estimators. When the number
of inputs increases, however, the algorithmic complexity for computing those confidence
intervals explodes. A randomization mechanism is investigated to overcome this issue.
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Attaining sufficient delivery of antibodies across blood-brain barriers (BBB) constitutes a 
significant challenge in the development of drugs to treat central nervous system (CNS) 
disorders.  Since not all antibodies can pass through blood-brain barriers, it is crucial to 
understand antibody exposure in the central nervous system to construct drug characteristics 
and identify proper dosing regimens. We focus on a minimal physiologically-based 
pharmacokinetic (mPBPK) model of the brain for antibody therapeutics, which was developed 
in [1].  This model is based on a previous multi-species platform brain PBPK model, which is 
reduced to 16 differential equations to improve the efficiency of simulations. The model 
includes 31 parameters, whose values are obtained from the original brain PBPK model. In this 
presentation, we will discuss the use of a sensitivity-based parameter subset selection algorithm 
to determine those parameters which are identifiable in the sense that they can be uniquely 
determined by data. We illustrate this for ascending human doses. Issues to be discussed include 
the computation of sensitivities using sensitivity equations and complex-step approximations 
and local versus quasi-global analysis. We will also discuss qualitative verification techniques 
in addition to quantitative techniques based on energy statistics. 

 

[1] P. Bloomingdale, S. Bakshi, C. Maass, E. van Maanen, C. Pichardo-Almarza, D. Bumbaca 
Yadav, P. van der Graaf and N. Mehrotra. Minimal brain PBPK model to support the preclinical 
and clinical development of antibody therapeutics for CNS diseases. J Pharmacokinet 
Pharmacodyn, https://doi.org/10.1007/s10928-021-09776-7, 2021. 
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As part of safety studies for nuclear reactors, numerical simulators are fundamental tools
for understanding, modelling and predicting physical phenomena. These tools can take a
large number of input parameters, characterizing the studied phenomenon or related to its
physical and numerical modelling. The information related to some of these parameters
is often limited or uncertain, this can be due to the lack or absence of data, measurement
or modelling errors, or a natural variability of the parameters. In this framework, global
sensitivity analysis (GSA) aims at studying the impact of the input uncertainties on
the output of the model. GSA methods therefore requires to characterize the input
uncertainties over their variation range, for example by assigning a probability distribution
to the input vector, and are mostly based on Monte Carlo simulations of the model, i.e.
on a random sampling of inputs according to their probability distributions.

We focus here on the sensitivity measures based on the Hilbert Schmidt Independence
Criterion (HSIC), introduced by [5] and then [3] for GSA purpose. These dependence
measures are built upon kernel-based approaches for detecting dependence, and more
particularly on cross-covariance operators in reproducing kernel Hilbert spaces (RKHS)
composed of mapping functions (features) and characterized by positive definite kernel
function. This amounts to considering covariance between feature functions applied to two
variables (here each of the d inputs {Xi}i=1,...,d and the output Y ). This set of functions
(possibly non-linear), which is defined by the space and the kernel, can be of infinite
dimension and allow to capture a very broad spectrum of forms of dependency. The HSIC
is then defined as the squared Hilbert-Schmidt norm of the cross-covariance operator and
somehow “summarizes” the set of covariances between features. In practice, HSIC offers
several other advantages, especially for time-consuming simulators. Indeed, it can be
estimated from a simple Monte-Carlo sample in a very simple (direct expression with
kernels) and low cost way (sample of a hundred simulations is often sufficient, estimation
independent from the dimension of the inputs). Moreover, under the use of characteristic
kernels, the nullity of HSIC(Xi, Y ) is equivalent to the independence of Xi and Y . HSIC
can be used quantitatively to rank the inputs by order of influence on the output, as well
as qualitatively to perform a screening of the inputs. For this last purpose, statistical
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independence tests built upon HSIC can be used [6, 4, 1]. These tests provides a more
rigorous and accurate statistical and mathematical framework than a simple assessment
and comparison of HSIC sensitivity measure values.

In this work, we focus on the extension of HSIC-based GSA to multivariate and functional
outputs. The HSIC can be applied to scalar, vector or even categorical random variables
as long as the notion of distance is well established in these cases. In the case of functional
random variables, the kernel literature has already proposed several ways to handle curves
or images for regression or classification purposes. For instance, the Principal Component
Analysis(PCA)-kernel [2] can be used, as illustrated in [3]. We introduce a new kernel more
suitable for functional output which relies on both functional PCA and a relevant weighted
combination of (one-dimensional) kernels applied to each PCA component. We compare
it with other previous definitions of kernels, all based on dimension reduction technique.
The performance of the proposed kernel is illustrated through analytical examples, by
showing that it led to a ranking of the inputs more consistent with the real influence
of the variables. Its interest is also highlighted on several industrial applications: a
compartmental epidemiological model with temporal outputs and a nuclear test case with
high-dimensional multivariate output and a strongly limited budget of simulations.

[1] Mélisande Albert, Béatrice Laurent, Amandine Marrel, and Anouar Meynaoui. Adap-
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[2] Hervé Cardot, Frédéric Ferraty, and Pascal Sarda. Functional linear model. Statistics
& Probability Letters, 45(1):11–22, 1999.

[3] Sébastien Da Veiga. Global sensitivity analysis with dependence measures. Journal
of Statistical Computation and Simulation, 85(7):1283–1305, 2015.

[4] Matthias De Lozzo and Amandine Marrel. New improvements in the use of depen-
dence measures for sensitivity analysis and screening. Journal of Statistical Compu-
tation and Simulation, 86(15):3038–3058, 2016.

[5] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring
statistical dependence with hilbert-schmidt norms. In International conference on
algorithmic learning theory, pages 63–77. Springer, 2005.

[6] Arthur Gretton, Kenji Fukumizu, Choon H Teo, Le Song, Bernhard Schölkopf, and
Alex J Smola. A kernel statistical test of independence. In Advances in neural
information processing systems, pages 585–592, 2008.
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Sociology of quantification is an expanding field touching on many families where numbers are 

produced, from statistical and mathematical modelling to data science, algorithms, big data, 

quantified self and indicators of various level of aggregation [1], [2]. In principle, some of the ideas 

brewed in the cellars of sensitivity analysis may find application to several families of quantification, 

beyond that of mathematical models stricto sensu; for example, SA attention to issues of design of 

the experiment can be of broad applicability; functional and variance decomposition are also very 

general tools which may find use in different settings [3]. Some of the ideas put forward to ‘tame’ 

the opacity of algorithms – such as that of exploring different set of assumptions in its making [4] - 

resonate with SA concepts such as modelling of the modelling process. Can the wisdom of sensitivity 

analysis be translated into a set of norms or precepts to feed into an epistemology – or 

hermeneutics - of quantification? In the present contribution we extend the principles laid down in 

[5] for mathematical modelling toward other instances of quantification, in an attempt to feed this

generalization into the broader arena of sociology of quantification.

[1] E. Popp Berman and D. Hirschman, “The Sociology of Quantification: Where Are We Now?,”
Contemp. Sociol., vol. 47, no. 3, pp. 257–266, 2018.

[2] A. Mennicken and W. N. Espeland, “What’s New with Numbers? Sociological Approaches to the
Study of Quantification,” Annu. Rev. Sociol., vol. 45, no. 1, pp. 223–245, 2019, doi:
10.1146/annurev-soc-073117-041343.

[3] A. Saltelli et al., Global sensitivity analysis : the primer. John Wiley, 2008.
[4] L. Amoore, Cloud Ethics, Algorithms and the Attributes of Ourselves and Others. Duke University

Press, 2020. [Online]. Available: https://www.dukeupress.edu/cloud-ethics
[5] A. Saltelli et al., “Five ways to ensure that models serve society: a manifesto,” Nature, vol. 582,

pp. 482–484, 2020.

Speaker: Andrea Saltelli
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Many applications benefit from, or even rely upon, determining which inputs have the
greatest effect on some output. Optimisation, control and risk management problems are
usually concerned with global sensitivity of the ouput to variations over the entire input
space. Often the underlying motivation is to prune design space because direct simula-
tions/experiments are costly, and to facilitate visualisation, analysis and optimisation of
the output. These reasons also favour emulation by a surrogate. Thus, surrogacy and
global sensitivity analysis are apt to work hand in hand.

Much global sensitivity analysis is variance-based, focussing on the Sobol indices [1]. Usu-
ally these are calculated directly by Monte Carlo methods, but there have been some stud-
ies where a surrogate is employed [2]. The focus has, until recently, been on scalar outputs.
In this work we present the full calculation of Sobol indices and their uncertainties for a
significant class of multi-output Gaussian Processes (MOGP). This formulation admits L
outputs as a function of M inputs, producing an M × L× L tensor of total effect Sobol
indices for the L×L output covariance matrix. This tensor may inform an assessment of
input relevance in a number of ways, such as isolating which inputs are most relevant to a
particular output, or the linkage (covariance) between two outputs. The Sobol index itself
is developed as a random variable. Although it is not normally distributed, we calculate
its variance as a measure of uncertainty, naturally as an M × L × L × L × L tensor of
covariances between Sobol indices.

The MOGPs used herein are limited to an ARD squared exponential kernel

cov [[y|x]l , [y|x
′]l′ ] = [ky(x, x

′)]l×l′ = [F ]l×l′ exp

(
−(x− x′)T [Λ]−1

l [Λ]−1
l′ (x− x′)

2

)

where [Λ]l is a diagonal M ×M matrix for each l ≤ L. Thus there is a single lengthscale
associated with each input/output combination. The squared exponential form has always
been widely favoured for smoothly varying outputs, and is key to analytic tractability.
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The calculations have been implemented in Python and tested against known values for
Ishigami and Sobol g-functions. The methods used here open up exciting possibilities for
model reduction, relating explanatory power to uncertainty and the correlation between
the predictions of different models. In particular, these calculations are performed in
a context ready to rotate the input basis to achieve optimal dimension reduction to an
active subspace of inputs. Furthermore, these calculations are formally valid even when
the underlying inputs are mutually dependent. TheM predictive MOGP input dimensions
of x can vary independently even when the training input dimensions cannot - but the
predictions will revert to the MOGP prior as there is no training data nearby. This work
is significantly motivated by the hope that this circumstance may be signalled by large
uncertainties in relevance measures such as the Sobol indices.

[1] Bertrand Iooss, Paul Lemâıtre. A review on global sensitivity analysis methods. in
C. Meloni and G. Dellino. Uncertainty management in Simulation-Optimization of
Complex Systems: Algorithms and Applications. Springer, 2015.

[2] A. Marrel, B. Iooss, B. Laurent and O. Roustant. Calculations of Sobol indices for the
Gaussian process metamodel. Reliability Engineering & System Safety, 94: 742-751
2009.
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Fourier Amplitude Sensitivity Testing (FAST) has long been used as a variance-based 

global sensitivity analysis (GSA) method. We develop a high dimensional model 

representation framework to use FAST as a surrogate model, called FAST-HDMR, so 

that not only can variance-based GSA be obtained, other analyses in uncertainty 

quantification, such as moment-independent GSA, forward uncertainty propagation and 

inverse modeling, can be investigated using the FAST surrogate as a byproduct with 

negligible computational cost. To enhance the accuracy of FAST surrogate models, we 

employ various variance reduction methods for sampling that can significantly reduce the 

error related to estimating the coefficients in FAST-HDMR, and sparse regression 

techniques that can remove the noisy components. We demonstrate the accuracy, 

efficiency and versatility of FAST-HDMR by a wide range of applications. 
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Sobol’ sensitivity analysis is a popular method for determining the global importance of
independent input variables for the variance of the output of a computational model.
While computing Sobol’ sensitivity indices based on Monte-Carlo integration is costly, it
has been found that they can be computed more efficiently by first computing a spectral
expansion – i.e., a representation of the model in terms of an orthonormal basis – and
then post-processing the expansion coefficients. This works whenever the spectral ex-
pansion yields an approximation to the ANOVA (a.k.a. Sobol’-Hoeffding) decomposition.
One example are polynomial chaos expansions (PCE), which represent a finite-variance
random variable (the model output) in terms of a basis consisting of polynomials that are
orthonormal with respect to the distribution of the input random variables.

While PCE are widely used because they are easy to generate and work well in many
practical applications, they are not the only possible choice for computing Sobol’ indices.
Any spectral expansion based on a tensor-product basis of univariate orthonormal basis
functions will yield an approximation to the ANOVA decomposition, as long as each of
the univariate bases contains the constant function. Recently, a new type of spectral
expansion has been proposed: Poincaré chaos expansions, which have the special (and
defining) property that the partial derivatives of the basis are again an orthonormal basis
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with respect to the same distribution as the basis itself [1, 2, 3]. Poincaré basis functions
are tensor products of univariate basis functions that are generated as eigenfunctions
of the so-called Poincaré differential operator [1]. They are in general non-polynomial,
with the exception of the Poincaré basis associated with the Gaussian distribution, which
coincides with the Hermite polynomials.

By virtue of their special property, Poincaré expansions are ideally suited for making
use of available model derivatives, as demonstrated in [2] for projection-based and in [3]
for sparse regression-based computation. In this talk, we summarize the results of our
recent paper [3] and present a number of further developments. We demonstrate the
efficiency of sparse regression for the computation of expansion coefficients, and show
that derivative-based computation results in accurate Sobol’ index estimates. The special
Poincaré property also allows the analytical computation of the derivative-based global
sensitivity measures (DGSM), which have been shown to be upper bounds to the total
Sobol’ indices [4]. Furthermore, the regression formulation makes it possible to compute
the coefficients by simultaneously using model evaluations and derivatives, an idea re-
peatedly explored in the context of PCE (gradient-enhanced PCE) and easily adaptable
to Poincaré expansions.

[1] O. Roustant, F. Barthe, and B. Iooss, Poincaré inequalities on intervals -
application to sensitivity analysis, Electronic Journal of Statistics, 2 (2017), pp. 3081–
3119.

[2] O. Roustant, F. Gamboa, and B. Iooss, Parseval inequalities and lower bounds
for variance-based sensitivity indices, Electronic Journal of Statistics, 14 (2020), pp. 386–
412.

[3] N. Lüthen, O. Roustant, F. Gamboa, B. Iooss, S. Marelli, and B. Sudret,
Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions,
arXiv preprint arXiv:2107.00394 (2021).

[4] M. Lamboni, B. Iooss, A.-L. Popelin, and F. Gamboa, Derivative-based global
sensitivity measures: General links with Sobol’ indices and numerical tests, Mathe-
matics and Computers in Simulation, 87 (2013), pp. 45–54.
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We propose sensitivity measures based on strictly consistent scoring functions. Scoring
functions are widely used to quantify the accuracy of point forecasts or point estimates
for some target functional such as the mean, some quantile, or a risk measure. Consistent
scoring functions are coherent with respect to increasing information sets [4], a property
our sensitivity measures inherit. Moreover, we show that our sensitivity measures adhere
to the nullity property in the sense that only information relevant for modelling the target
functional at hand is considered – a property we term zero information gain.

The mathematical framework we work with is a typical sensitivity analysis setup that
consists of random input factors X = (X1, . . . , Xn) and a corresponding output of interest
Y = g(X), where g : Rn → R. The modelling goal is T (Y ), some functional of the
distribution of Y . We regard the functional T as a law-determined map from a space
of random variables Y into the reals and write T (Y ) for its value when Y ∈ Y . The
law-determined property means that T (Y ) depends only on the distribution of Y . For a
subset of input factors XI , I ⊆ {1, . . . , n}, we denote by T (Y |XI) the random variable
corresponding to the functional evaluated at the conditional distribution of Y given XI .
Sensitivity measures assess the accuracy gain from modelling T (Y ) – without additional
knowledge – in comparison to using the information pertaining to the input factors XI ,
that is, when modelling T (Y |XI).

A scoring function is a map S : R×R→ [0,∞) such that a point forecast z ∈ R receives the
(negatively oriented) score S(z, y), if Y = y materialises. A scoring function is consistent
for a functional T if

E[S(T (Y ), Y )] ≤ E[S(z, Y )] , (1)

for all z ∈ R and for all Y ∈ Y . It is strictly consistent if it is consistent and if equality
in (1) holds if and only if z = T (Y ). We assume, without loss of generality, that a fully
informed forecast receives a vanishing score, i.e., S(T (Y |X), Y ) = S(T (Y |Y ), Y ) = 0.
This normalisation together with (strict) consistency implies that S(z, Y ) is (strictly)
positive if z 6= T (Y |Y ). The tower property of the conditional expectation together with
consistency leads to the sensitivity with respect to increasing information sets [4], i.e.

E[S(T (Y ), Y )]− E[S(T (Y |XI), Y )] ≥ 0, (2)

35



which gives rise to the following definition of a sensitivity score, which subsumes the
well-known Sobol indices:

Let S be a scoring function (strictly) consistent for T , then the sensitivity score of Y with
respect to XI , I ⊆ {1, . . . , n}, is given by

ξSXI
=

E[S(T (Y ), Y )]− E[S(T (Y |XI), Y )]

E[S(T (Y ), Y )]
. (3)

The non-negativity of S together with (2) implies that ξSXI
∈ [0, 1]. A higher sensitivity

score reflects a larger value of information, when learning the distributions of input factors.
If S is strictly consistent, then ξSXI

= 0 if and only if XI does not contain any information
for modelling T (Y ) (that is, T (Y |XI) = T (Y )). On the other hand, a sensitivity score
of 1 means that the risk factor(s) is as valuable as the entire set of input factors X
(that is, T (Y |XI) = T (Y |Y )). Our sensitivity measure is closely connected to what
is known in the forecasting literature as skill scores and in regression analysis as the
universal coefficient of determination; see e.g., [3]. In the sensitivity analysis literature
the connection between scoring functions and sensitivity measures was first discussed by
[1]. Our sensitivity score can be thought of as the ratio of uncertainty, E[S(T (Y ), Y )],
which can be explained by XI , much like the notorious R2, which arises when T is the
mean and S is the squared loss.

While there is a vast literature on sensitivity measures, only recently have sensitivity
measures suitable for quantile based risk measures been introduced, e.g., [5]. In this work,
we provide a holistic view on sensitivity scores suitable for models when the functional
is a risk measure. Specifically, we propose sensitivity scores for the Value-at-Risk and
the Expected Shortfall, relying on joint consistent scoring functions for this pair [2]. We
discuss properties of sensitivity scores, non-uniqueness of scoring functions by studying
Murphy diagrams, and provide an alternative to the property nullity-implies-independence
of a sensitivity measure; for a definition see [1]. We show that, depending on the functional
T , the nullity-implies-independence is too strong a requirement and introduce the notion
of zero information gain which is consistent with the framework of sensitivity scores.

[1] E. Borgonovo, G. B. Hazen, V.R.R. Jose, and E. Plischke. Probabilistic sensi-
tivity measures as information value. European Journal of Operational Research,
289(2):595–610, 2021.

[2] T. Fissler and J. F. Ziegel. Higher order elicitability and Osband’s principle. Ann.
Statist., 44(4):1680–1707, 2016.

[3] T. Gneiting and J. Resin. Regression diagnostics meets forecast evaluation: Condi-
tional calibration, reliability diagrams, and coefficient of determination. arXiv:2108.03210.

[4] H. Holzmann and M. Eulert. The role of the information set for forecasting – with
applications to risk management. Ann. Appl. Stat., 8:79–83, 2014.

[5] Silvana M Pesenti, Pietro Millossovich, and Andreas Tsanakas. Cascade sensitivity
measures. Risk Analysis, 2021.
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In sensitivity analysis, Sobol indices can be used for testing non-parametrically the signif-
icance of a set of variables X1, ..., XJ to explain a real-valued square integrable variable
Y . For a subset u ⊂ {1, ..., J}, a natural notion of non-parametric significance can be
defined by stating that the variables Xj, j /∈ u are not significant to explain Y in presence
of Xj, j ∈ u if the null hypothesis

H0 : E(Y |Xj, j ∈ u)
a.s.
= E(Y |X1, ..., XJ)

is true. Denoting by

Su =
var
(

E(Y |Xj, j ∈ u)
)

var(Y )

the Sobol index associated to the variables Xj, j ∈ u for u ⊆ {1, ..., J}, the hypothesis H0

is actually equivalent to the equality Su = S where S is the Sobol index associated to the
whole collection X1, ..., XJ . By an appropriate choice of the maximal set X1, ..., XK and
the subet u, this approach can be used for instance to test the absolute non-parametric
significance of a single variable Xj setting H0 : 0 = S{j} (for J = 1 and u = ∅), or of one
additional variable Xj′ in the presence of Xj, j ∈ u by considering H0 : Su = Su∪{j′}.

This hypothesis testing framework was studied in [1] given an iid sample of the variables.
However, the Pick-Freeze method used to derive the estimators of the Sobol indices re-
quires a particular experimental design which forbids for instance to test different hypoth-
esis using the same sample.

We propose a different approach to test the non-parametric significance that relies on the
empirical moments of Y restrained by the values of Xj, j = 1, ..., J . If the null hypothesis
H0 : Su = S holds, the process

ξ̂(x) :=
1

n

n∑
i=1

Yi1{Xi ≤ x} − 1

n

n∑
i=1

Yi1{X(u)
i ≤ x(u)} × 1

n

n∑
i=1

1{X(u)
i ≤ x(u)} , x ∈ RJ

where x(u) = (xj)j∈u and u = {1, ..., J}\u, is asymptotically Gaussian with zero mean. A
Monte-Carlo estimation of an `2 norm of this process can then serve as a test statistics for
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the non-parametric significance of Xj, j /∈ u, given that the asymptotic variance can be
suitably estimated. The main advantage of this method is that it can be used to test the
non-parametric significance for any given subset u (and any initial collection X1, ..., XJ)
using the same sample, where no particular design of experiment is needed.

A numerical analysis shows that this new approach performs well in terms of both signif-
icance level and power. A comparison with the Pick-Freeze based approach is carried out
with convincing results.

[1] Fabrice Gamboa, Alexandre Janon, Thierry Klein, A Lagnoux, and Clémentine Prieur.
Statistical inference for sobol pick-freeze monte carlo method. Statistics, 50(4):881–
902, 2016.
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Global sensitivity analysis (GSA) of a numerical model G(.) aims at quantifying the
inputs’ influence upon its output’s variability. When the inputs X = (X1, . . . , Xd) are
supposed independent, the Sobol’ indices [1] allow to associate each input to a percentage
of the output’s variance, i.e., V(G(X)). However, when the inputs are dependent, they
do not always sum up to one, and thus, do not reflect accurate variance’s percentages.

In order to circumvent this issue, cooperative game theory methods, in particular al-
location rules, have been applied to GSA, in order to allocate shares of the output’s
variance among the inputs. It associates to a cooperative game (D, v), a real-valued
vector (φi

(
(D, v)

)
)i∈D, where D = {1, . . . , d} is a set of player, and v, a real-valued pos-

itive value function defined on Pd, the set of all subsets of D. For i ∈ D, φi

(
(D, v)

)
represents the share of the total gain v(D) allocated to the player i. One particular
allocation rule is the Shapley value, which when applied to the game (D,Sclos), where
Sclos : A → V(E[G(X)|XA])/V(G(X)) can be computed ∀A ∈ Pd, and where D repre-
sents the set of all inputs, provides an output’s variance allocation among the inputs even
when present a correlated probabilistic structure. These resulting allocations are known
as the Shapley effects [2]. However, these indices present a major drawback, comonly
known as the “Shapley’s joke” [3]: an exogenous variable (i.e., not present in the model)
can be granted a non-negligible share of the output’s variance, as soon as it is sufficiently
correlated with endogenous inputs.

To circumvent this limitation, the use of another allocation rule is proposed, namely the
proportional value. The difference between both allocation rule can be understood by
taking a two-players game (D = {1, 2}, v). One can consider v({1}) and v({2}) as being
the individual contributions, and ID = v({1, 2})−v({1})−v({2}) would be the coalitional
surplus. The Shapley and proportional values of the player {1}, denoted respectively
Shap1

(
(D, v)

)
and PV1

(
(D, v)

)
are given by:

Shap1
(
(D, v)

)
= v
(
{1}
)

+
ID
2

PV1
(
(D, v)

)
= v
(
{1}
)

+
v({1})

v({1}) + v({2})
ID.
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While the Shapley values redistributes the coalitional surplus equally among both players,
the proportional values does redistribute them proportionally to the individual contribu-
tions.

More generally, the proportional value of a game (D, v) can be defined recursively, for
positive function v, ∀i ∈ D as:

PVi
(
(D, v)

)
=

P (D, v)

P (D \ {i}, v)

with P (A, v) = v(A)
(∑

j∈A P (A \ {j}, v)−1
)−1

,∀A ⊆ D \ {∅}, and P (∅, v) = 1.

In order to not fall under the Shapley’s joke, one needs to consider the dual cooperative
game by taking the marginal contribution function w(A) = v(D) − v(D \ A) of the
game instead of the value function v itself. This means computing the allocations of
the cooperative game (D,ST ) where ST are the total Sobol’ indices defined as ST

A =
Sclos
D − Sclos

D\A. While the Shapley values of both initial cooperative game and its dual are
equivalent, it is not the case for the proportional values. The newly proposed indices,
denoted proportional marginal effects are defined , ∀i ∈ D as:

PMEi

(
(D,Sclos

)
= PVi

(
(D,ST )

)
.

Considering the proportional values of (D,ST ) leads to an interesting property: a variable
with a null total Sobol’ index (i.e., a variable that is not included in the model) will receive
a zero share. This property is possible thanks to an extension of the originally proposed
allocation to non-negative value functions, which will be presented.

The difference in behavior between the Shapley and proportional effects is outlined by
means of analytical results on toy-cases. The usefulness of the proposed methodology in
detecting non-influential inputs is discussed, and a data-driven algorithm for estimating
the proportional marginal effects is proposed. A real-world use-case of a ultrasonic non-
destructive control of a weld is also presented.

[1] I.M. Sobol. Sensitivity estimates for nonlinear mathematical models. Mathematical
Modelling and Computational Experiments, 1: 407—414, 1993.

[2] A.B. Owen. Sobol’ indices and Shapley value. SIAM/ASA Journal of Uncertainty
Quantification, 2: 245–251, 2014.

[3] B. Iooss, C. Prieur. Shapley effects for Sensitivity Analysis with correlated inputs :
Comparisons with Sobol’ Indices, Numerical Estimation and Applications. Interna-
tional Journal for Uncertainty Quantification, 9(5): 493–514, 2019.

[4] B. Feldman. The proportional value of a cooperative game, Unpublished manuscript
for a Contributed Paper at the Econometric Society World Congress 2000, http://
netec.mcc.ac.uk., 1999
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In this presentation we set the concept of model complexity on statistical theory and
the notion of “effective dimensions” [1, 2, 4] to show that more complex mathematical
models tend to produce more uncertain estimates. This is because they respectively have
a higher effective dimension in the “truncation” and the “superposition” sense, i.e., in the
number of influential parameters and in the order of the highest effect active in the model
function. Both dimensions boost the output variance. We illustrate our case with several
models of the energy, agricultural and epidemiological domain and with two meta-models
that ground our findings in a very wide range of model functional forms. Our approach
contributes to the debate on the so called modeling hubris [3] and may help modelers
better identifying the threshold beyond which the addition of model realism no longer
improves the model’s fit for purpose.

[1] Russel E. Caflisch, William Morokoff, and Art Owen. Valuation of mortgage backed
securities using Brownian bridges to reduce effective dimension. Journal of Compu-
tational Finance, 1:27–46, 1997.

[2] S. Kucherenko, B. Feil, N. Shah, and W. Mauntz. The identification of model effective
dimensions using global sensitivity analysis. Reliability Engineering & System Safety,
96(4):440–449, apr 2011.
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[3] Andrea Saltelli, Gabriele Bammer, Isabelle Bruno, Erica Charters, Monica Di Fiore,
Emmanuel Didier, Wendy Nelson Espeland, John Kay, Samuele Lo Piano, Deborah
Mayo, Roger Pielke Jr, Tommaso Portaluri, Theodore M Porter, Arnald Puy, Ismael
Rafols, Jerome R Ravetz, Erik Reinert, Daniel Sarewitz, Philip B Stark, Andrew
Stirling, Jeroen van der Sluijs, and Paolo Vineis. Five ways to ensure that models
serve society: a manifesto. Nature, 582(7813):482–484, jun 2020.

[4] Xiaoqun Wang and Kai Tai Fang. The effective dimension and quasi-Monte Carlo
integration. Journal of Complexity, 19(2):101–124, 2003.
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Let f(x) be a scalar model response with x = (x1, . . . , xD) = (v1,v2) a D-dimensional
independent random input vector and (v1,v2) two complementary subsets of x. Screening
analysis aims at identifying the subset of important input variables (or equivalently the
subset of irrelevant variables). In this work, by important variables we mean those that
have a substantial contribution to the total response variance. The Innovative Algorithm
(see [1]) was recently introduced to compute the so-called first- and total-order variance-
based sensitivity indices as follows,
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To estimate the overall individual sensitivity indices, the innovative algorithm requires
Nt = 2N(D+1) model runs. This might be unaffordable if D and N are high or the model
run is computationally demanding. In this case, it is better to first perform a screening
analysis and eventually to estimate accurately the sensitivity indices of the relevant input
variables. To perform the screening analysis we propose to use the sequential bifurcation
technique [3] but based on the innovative algorithm at very sample sizes N .

The algorithm will be discussed and tested on several benchmarks which involve large
number of input variables. In particular, the approach will be applied to the Metafunctions
recently introduced for this purpose in [2].

[1] I. Azzini and R. Rosati. Sobol’ main effect index: An Innovative Algorithm (IA) using
dynamic adaptive variances. Reliability Engineering and System Safety, 213:107647,
2021.

43



[2] W. Becker. Metafunctions for benchmarking in sensitivity analysis. Reliability Engi-
neering and System Safety, 204:107189, 2020.

[3] B. Bettonvil and J. P. C. Kleijnen. Searching fo important factors in simulation
models with many factors: Sequential bifurcation. European Journal of Operations
Research, 96:180–194, 1996.
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The aim of this work is to assess the performance of the scrambled Sobol’ quasi random generator 
against the classic Sobol’ quasi-random sampling for the estimation of global sensitivity indices. 

We base our comparison on a case study in the field of smart electricity grids, which was presented at 
the Ninth SAMO Conference in Barcelona. In Barcelona, we used the classic Sobol’ quasi-random 
sequences for sample generation. Here, we adopt exactly the same set-up but generate the sample using 
the new scrambled generator in order to guarantee a fair comparison for the estimation of the sensitivity 
indices. 

One of the main drawbacks of using low discrepancy sequences (LDS), such as the classic Sobol’ quasi-
random sequences, is that there is no statistical method for computing the standard error of the estimate. 
The practical recipe is to compute the RMSE (the root-mean-squared relative error) using different parts 
of the Sobol' sequence. However, this does not have theoretical statistical justification. This means that in 
performing the calculations, there is no clear termination criterion for the number of points to use. On the 
contrary, for Scrambled LDSs, one can construct confidence intervals around the estimated value, hence 
providing practical error bounds. Owen [1] showed that, for a sufficiently smooth integrand f(x), the 
variance of the randomized net is of order (logN)^(d-1)/N^(3). Thus the integration errors are of order 
(logN)^((d-1)/2)/N^(3/2) in probability, which is higher than the rate (logN)^((d-1))/N attained by non-
randomized (i.e., standard) LDSs. BRODA developed scrambled Sobol’ Sequence generators using 
Owen’s scrambling with additional permutations [2], which was used in this work.  

The application deals with testing interoperability between a data concentrator and a set of smart 
meters using the methodology developed at the Smart Grids Interoperability Laboratory of the Joint 
Research Centre of the European Commission [3].  

Data concentrators and smart meters are critical components of a smart electricity grid. 

Smart meters are simple electronic devices that register real-time consumption and generation of 
electricity, in a household or an industry, and send the data to the electricity retailer for monitoring and 
billing.  

A data concentrator connects smart meters from the same neighborhood providing communication 
capability with a large number of them. The data concentrator can be configured to request periodic 
electricity information (power consumption, voltage, frequency, etc.) from each smart meter.  
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For the correct functioning of the smart grid, components and systems must be interoperable. 
Interoperability is, loosely speaking, the ability of such components / systems to communicate 
appropriately and understand each other so that they can properly perform the function they are 
supposed to perform. 

Design of experiments and sensitivity / uncertainty analysis are relevant components of the JRC 
methodology [3], which can reveal the limits of a system under test and give valuable feedback about the 
critical conditions that do not guarantee interoperability.  

The design and analysis of experiments employed in the JRC methodology supply information about 
the crucial parameters that either lead to an acceptable system performance or to a failure of 
interoperability.  

The system is stress-tested under different conditions by varying three parameters: the rate at which 
metering data are requested by the data concentrator (ranging from 1 second to 30 minutes), the number 
of smart meters connected to the data concentrator (ranging from 1 to 8) and the physical distance between 
the data concentrator and the smart meters (ranging from 100 to 400 meters). This latter factor could 
influence the success rate of the communication because of induced electromagnetic fields. 

The three factors are sampled within their range using the scrambled Sobol’ quasi-random number 
generator. For each combination of these three factors, a lab experiment is executed to measure the share 
of readings correctly received by the data concentrator from the smart meters. The output variable for the 
sensitivity analysis is the share of the successful readings. 

Each experiment lasts up to 3 hours, depending on the values sampled for the first factor, plus the 
time to set-up the equipment. Therefore, only a limited amount of experiments can be executed, for a 
given time budget. As in the tests carried out for SAMO in Barcelona, we could run 16 experiments. 

Tests confirm that scrambled LDS show superior performance in comparison with unscrambled Sobol’ 
sequences.  

[1] Owen, A.B., Monte Carlo variance of scrambled net quadrature. S.I.A.M. Journal of Numerical
Analysis 34 (5), 1884-1910, 1997. 

[2] E. Atanassov, S. Kucherenko, Description of the implementation of Owen scrambling for the Sobol'
sequences, BRODA Ltd., 2018 

[3] Papaioannou, I.; Tarantola, S.; Lucas, A.; Kotsakis, E.;Marinopoulos, A.; Ginocchi, M.; Olariaga-
Guardiola,M.; Masera,M. Smart Grid Interoperability Testing Methodology; EUR 29416 EN; Publications 
Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-96855-6. 
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The use of complex computer models for the analysis of applications from sciences, en-
gineering and other fields is by now routine. Often, the models are expensive to run in
terms of computational time. Thus it is crucial to understand the global influence of one
or several inputs on the output of the system under study with a moderate number of runs
afforded. When these inputs are regarded as random elements, this problem is generally
called (global)sensitivity analysis.

A classical tool to perform global sensitivity analysis consists in computing the Sobol
indices. They are well tailored when the output space is . Many different estimation
procedures of the Sobol indices have been proposed and studied in the literature. Some
are based on Monte-Carlo or quasi Monte-Carlo design of experiments (see [1, 2]). More
recently a method based on nested Monte-Carlo [3] has been developed. In particular,
an efficient estimation of the Sobol indices can be performed through the so-called “Pick-
Freeze” method. For the description of this method and its theoretical study, we refer
to [4, 5] and references therein. Some other estimation procedures are based on different
designs of experiments using for example polynomial chaos expansions (see [6]).

Nowadays, the computer code output is often no longer a real-valued multidimensional
variable but rather a function. Some other times, the computer code is stochastic in
the sense that the same inputs can lead to different outputs. When the output of the
computer code is a function (for instance, a cumulative distribution function) or when
the computer code is stochastic, Sobol indices are no longer well tailored. It is then cru-
cial to define indices adapted to the functional or random aspect of the output. When
the output is vectorial or valued in an Hilbert space, some generalizations of Sobol in-
dices are available [7, 8]. More recently, indices based on the whole distribution have
been developed [9, 10]. In particular, the method relying on Cramér-von-Mises distance
[11] compares the conditionnal cumulative distribution function with the unconditional

47



one by considering the Hoeffding decomposition of half-space indicators (rather than the
Hoeffding decomposition of the output itself) and by integrating them.

In this talk we focus on two kinds of computer codes: 1) computer codes for which
the output is the cumulative distribution function of a real random variable and 2) real-
valued stochastic computer codes. A first step will consist in performing global sensitivity
analysis for these kinds of computer codes. Further, we focus on second-level analysis that
corresponds to the sensitivity analysis with respect to the input distribution. Then we
will deduce how to perform second-level sensitivity analysis using the tools developed in
the first step. A code with cumulative distribution function as output can be seen as a
code taking values in the space of all probability measures on . This space can be endowed
with a metric. This point of view allows to define indices for this kind of codes. Further,
as stochastic codes will be seen as a “discrete approximation” of codes having cumulative
distribution functions as values, we will define define “natural” indices for such stochastic
codes. Finally, we will embedded the framework of second-level sensitivity analysis into
the framework of stochastic codes. More preciselly, we consider a black-box code f defined
on a product of measurable spaces E = E1 × E2 × . . .× Ep (p ∈ N∗) taking its values in
a metric space X . The output denoted by Z is then given by

Z = f(X1, . . . , Xp). (1)

We

The aim of this talk is to give answers to the following questions.

Question 1 How can we perform Global Sensitivity Analysis (GSA) when the output space is
the space of probability distribution functions (p.d.f.) on or the space of cumulative
distribution functions (c.d.f.)?

Question 2 How can we perform GSA for stochastic computer codes?

Question 3 How can we perform GSA with respect to the choice of the distributions of the input
variables?

.

[1] Kucherenko, Sergei and Song, Shufang Different numerical estimators for main effect
global sensitivity indices. JReliability Engineering & System Safety, 165: 222-238,
2017.

[2] Owen, Art B. Better Estimation of Small Sobol’ Sensitivity Indices, ACM Trans.
Model. Comput. Simul., 23, 2 1-11,2013.

[3] Takashi Goda Computing the variance of a conditional expectation via non-nested
Monte Carlo Operations Research Letters 45, 1, 63-67, 2017
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[4] Janon, A. and Klein, T. and Lagnoux, A. and Nodet, M. and Prieur, C., Asymp-
totic normality and efficiency of two Sobol index estimators, ESAIM: Probability and
Statistics, 18, 1 342-364,2014.

[5] Gamboa, F. and Janon, A. and Klein, T. and Lagnoux, A. and Prieur, C., Statistical
inference for Sobol Pick-Freeze Monte Carlo method, Statistics, 50,4, 881-902, 2016

[6] Sudret, B., Global sensitivity analysis using polynomial chaos expansions, Reliability
Engineering & System Safety, 93,7, 964-979,2008.

[7] Lamboni, M. and Monod, H. and Makowski, D., Multivariate sensitivity analysis to
measure global contribution of input factors in dynamic models, Reliability Engineer-
ing & System Safety, 96, 4, 450-459, 2011.

[8] Gamboa, F. and Janon, A. and Klein, T. and Lagnoux, A. Sensitivity analysis for
multidimensional and functional outputs, Electronic Journal of Statistics, 8,575-603,
2014

[9] Da Veiga, S., Global sensitivity analysis with dependence measures, J. Stat. Comput.
Simul., 85, 7, 1283-1305, 2015.

[10] Borgonovo, E. Iooss, B.”, Moment-Independent and Reliability-Based Importance
Measures, Handbook of Uncertainty Quantification,1-23,2016.

[11] Gamboa, Fabrice and Klein, Thierry and Lagnoux, Agnès Sensitivity analysis based
on Cramér von Mises distance, SIAM/ASA Journal on Uncertainty Quantification,
6, 2, 522-548,2018. PU janon2012asymptotic,pickfreeze
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EDF R&D and Institut de Mathématiques de Toulouse (IMT), France,

marouane.il-idrissi@edf.fr

Vincent Chabridon
EDF R&D, France, vincent.chabridon@edf.fr

Bertrand Iooss
EDF R&D and IMT, France, bertrand.iooss@edf.fr

Numerical models can be of great help with critical systems for risk and reliability assess-
ment. Tracking and understanding failures of such systems can allow to avoid potentially
dramatic consequences. Reliability-oriented sensitivity analysis (ROSA) [1] aims at mea-
suring how uncertainties induced by the input probabilistic model influence the variability
of (potentially rare) failure events. In particular, a set of methods aim at performing what
is called target sensitivity analysis (TSA) [2], i.e., at catching the influence of the model’s
inputs (considering the entire input domain) on the occurrence of a failure event.

Formally, for a real-valued numerical model G(.), this implies to consider the ROSA
variable of interest 1{G(X)>t}(X), where t ∈ R is a threshold above which the system
is assumed to enter a failure state. The traditional TSA quantity of interest (QoI) is
the failure probability given by P(G(X) > t). The main goal of TSA is to quantify the
influence of the inputs on the variability of the chosen QoI, after uncertainty propagation.

Traditional global sensitivity analysis (GSA) methods (and subsequently, the common
ROSA methods) require an independence assumption on the inputs. An example would
be the well-known Sobol’ indices, whose interpretation is dramatically altered when inputs
are correlated. Recent approaches proposed GSA indices which remain interpretable
even when statistical dependency is at stake: the Shapley effects [3]. They leverage the
framework of cooperative game theory, where the central question is the redistribution of
wealth among several players. By analogy with the sensitivity analysis of model output
framework, it allowed to define a particular decomposition of the output’s variance.

By leveraging this framework, one can obtain TSA indices that can be easily interpretable
as shares of meaningful statistics. In the case of variance decomposition, the newly pro-
posed target Shapley effect [4] allocated to an input variable Xj, j = 1, . . . , d, can be
written as:

T-Shj =
1

d

∑
A⊂{−j}

(
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|A|

)−1(V
(
E
[
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(
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]) )
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where {−j} = {1, . . . , d} \ {j}, and verifying
∑d

i=1 T-Shi = 1. These indices can be
understood as a particular aggregation of “individual”, “interaction” and “dependency”
effects relative to the Shapley values. They are particularly relevant in the context of
TSA where high interactions and induced correlations between inputs tend to blur the
global comprehension of the underlying studied failure phenomenon. Fig. 1 provides an
illustrative example.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

X1

X
2

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

Correlation

T
−

S
h

X1
X2

Figure 1: Target Shapley effects for a failure rectangle. The red rectangle represents the
failure domain, for different correlation values between the inputs (top row) and each
inputs’ target Shapley effect with respect to their correlation coefficient (bottom).

Various estimation schemes will be introduced (Monte Carlo sampling as well as a given-
data one applicable when a unique data sample is available), with illustrations on analyt-
ical results on toy-cases and real industrial applications (e.g., a river flood model and an
ultrasonic non-destructive control of a weld).

[1] V. Chabridon. Reliability-oriented sensitivity analysis under probabilistic model un-
certainty – Application to aerospace systems. Ph.D. thesis, Université Clermont Au-
vergne, 2018.

[2] A. Marrel and V. Chabridon Statistical developments for target and conditional sen-
sitivity analysis: application on safety studies for nuclear reactor. Reliability Engi-
neering & System Safety, 214: 107711, 2021.

[3] A.B. Owen. Sobol’ indices and Shapley value. SIAM/ASA Journal of Uncertainty
Quantification, 2: 245–251, 2014.

[4] M. Il Idrissi, V. Chabridon, B. Iooss. Developments and applications of Shapley
effects to reliability-oriented sensitivity analysis with correlated inputs. Environmental
Modelling & Software, 143: 105115, 2021.
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Parametric Sensitivity Analysis (PSA) investigates the sensitivity of parameters, defining
the design space of a shape-optimisation problem, for tackling the challenges of the curse
of dimensionality or decreasing the uncertainty in design’s performance. This is critical
for complex engineering problems, especially those involving free-form shapes. Among
the difficulties a robust PSA has to handle is related to the fact that a parameter can
be sensitive within a certain local region of the design space but become insensitive in
some other regions. Therefore, setting an applicable design space becomes a difficult and
unnerving task for robust and desired results. As sensitivity analysis within a non-viable
design space can be futile; either resulting in the elimination of an important parameter
during dimension reduction or wastage of computational resources if uncertainty reduction
is carried out with inaccurately classified sensitive parameters.

In this paper, we introduce the concept of intra-sensitivity to identify parameters whose
perturbation in the range generates the largest inconsistency in the sensitivity of other
parameters. For this purpose, we firstly develop and perform an ASM-based (Active Sub-
space Method [1]) regional sensitivity analysis, which investigates parametric sensitivity
in local regions of the overall design space. The results of regional analysis are then used
to conduce parameters’ intra-sensitivity as they provide adequate information on how
perturbing a parameter’s range affects the sensitivity of itself and the remaining parame-
ters. Once identified, intra-sensitive parameters can be tuned further to construct a viable
design space, thereby avoiding uncertainty in the sensitivity results. The regional anal-
ysis has been applied in conjunction with a Dynamic Propagation Sampling approach,
for tackling the computational complexity arising when high-dimensional problems are
concerned. After identifying sensitive and intra-sensitive parameters, their impact on de-
sign geometry is assessed with the aid of a feature saliency map build with a Hausdorff
distance-based approach [2] aiming to identify the sensitive and intra-sensitive geomet-
rical features or regions of geometry. This feature identification also assists designers to
compare different types of free-form parametrisations.

The above contributions yielded a complete pipeline for studying and analysing the re-
gional behaviour of parametric sensitivity of free-form shape. The performance of this
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pipeline is validated with an application in the area of computer-aided ship design us-
ing two parametric modellers (PM): a PD-based (Procedural Deformation) PM structured
with T-splines [3, 4] and an FFD-based (Free-Form Deformation [5]) PM involving 24 and
104 geometrical parameters, respectively. The corresponding design spaces have been gen-
erated using as parent hull the KCS containership, which is extensively used for CAD and
CFD experimentation in the Naval Architecture community. The volume displacement
and the total resistance of the model are taken as QoI’s (Quantities of Interest). Finally,
the robustness and convergence performance of components of this pipeline is compared
with the state-of-the-art techniques..

[1] P. G. Constantine. Active subspaces: Emerging ideas for dimension reduction in
parameter studies. Society for Industrial and Applied Mathematics, 2015.

[2] A. Krishnamurthy., S. McMains., I. Hanniel. GPU-accelerated Hausdorff distance
computation between dynamic deformable NURBS surfaces. Computer-Aided Design,
43(11), 1370–1379, 2011.

[3] K. V. Kostas., A. I. Ginnis., C. G. Politis., P. D. Kaklis. Ship-hull shape optimiza-
tion with a T-spline based BEM–isogeometric solver. Computer Methods in Applied
Mechanics and Engineering, 284, 611–622, 2015.

[4] T. Katsoulis., X. Wang., P. D. Kaklis. A T-splines-based parametric modeller for
computer-aided ship design. Ocean Engineering, 191, 106433, 2019.

[5] T. W. Sederberg., S. R. Parry. Free-form deformation of solid geometric models.
In Proceedings of the 13th annual conference on Computer graphics and interactive
techniques, 151-160, 1986.
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Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France,

axelle.hego@univ-lorraine.fr

Floriane COLLIN
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In the last decade, soil imperviousness has been one of the main urban issues in North
Europe. In case of strong rain events, runoff can lead to the discharge of high volume of
water and can cause water system saturation. Among all urban-water regulation systems,
Green Roofs (GR) can be used to store and delay the release of rainwater to sewers [3].
GR are also considered as a sustainable solution that offers benefits such as building
insulation, urban heat island cooling during summer and air pollution control.
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measurement

Figure 1: Profile view of a typical green roof.

.

Green roofs are composed of a substrate
layer (ii) on top of which vegetation (i) is
growing. Under the substrate, a geotextile
(iii), a drainage layer (iv) and an insulating
layer (v) protect the building (Figure 1).
The hydrological performances are directly
associated to the GR characteristics such
as soil parameters of the different layers, di-
mension, type of vegetation, etc. The out-
flow of a GR is mainly related to the water
content inside the layers. Few models ex-
ist to describe the hydrological infiltration
throughout soil and they are based on the Richards’ equation. This highly nonlinear
partial differential equation describes the water retention capacity and the outflow in un-
saturated porous media. The Richards’ equation combined with the Van Genuchten -
Mualem model are coded in Hydrus-1D© software to simulate hydrological behavior [4].
This software allows the set up of the green roof structure, boundary conditions, meteoro-
logical data and vegetation variables in order to reproduce the green roof real conditions.
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However, some of the model parameters, as soil parameters or vegetation variables, are
challenging to determine as they are difficult to measure accurately through experiments.
All the parameter uncertainties are propagated to the water retention capacity simulated
and need to be analysed with Global Sensitivity Analysis (GSA). A recent study has
been dedicated to analyse the influence of soil parameters as saturated water content,
porosity, etc. It has highlighted that three soil parameters of the substrate layer are more
influential than the soil parameters of the other layers [2]. These results allow to reduce
the number of uncertain soil parameters for the following studies. Nevertheless, it also
appears that the variability of the vegetation parameters as crop height and root depth,
set to a constant value in this previous study, could have effects on the water retention
capacity.
In this proposed study, the GR model is dynamic and depends on static uncertain inputs,
the soil parameters and on time-varying uncertain inputs, the vegetation parameters. In-
deed, a one year period is analysed in order to observe different hydrological phenomenon,
and the vegetation parameters as crop height or root depth vary over the seasons. Bound-
ary conditions, meteorological data and water retention data were measured from an
in-situ experimental green roof platform located in Tomblaine (France) and are used to
simulate water retention with real conditions. The objective of this study is to investigate
the influence of soil and vegetation parameters on the water retention capacity over time
with GSA approach. The challenge is to generate samples of vegetation parameters that
satisfy the random fields distribution. The random fields are assumed independent and
normally distributed, defined by their means and covariance functions. One possibility
is to resort to the Karhunen-Loève expansion as in [1]. Then, to compute sensitivity
indices for the time-varying model output, polynomials chaos expansion is applied with a
sequential [2] and PCA-based multivariate approach [2].

[1] F. Anstett-Collin, J. Goffart, T. Mara, and L. Denis-Vidal. Sensitivity analysis of
complex models: coping with dynamic and static inputs. Reliability Engineering &
System Safety, 134:268–275, 2015.

[2] A. Hégo, F. Collin, H. Garnier, and R. Claverie. Approaches for green roof dynamic
model analysis using GSA. In 19th IFAC symposium on system identification: learning
models for decision and control, Padova, Italy, 2021.

[3] Y. Li and R.W. Badcock. Green roof hydrologic performance and modeling: a review.
Water Science & Technology, 69(4):727–738, 2014.

[4] J. Simunek, M. Sejna, H. Saito, M. Sakai, and M.Th. van Genuchten. The HYDRUS-
1D software package for simulating one-dimensional movement of water, heat, and
multiple solutes in variably saturated media. Department of Environmental Sciences
University of California Riverside, Riverside, California, 2008.
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The transport of phosphorous (P) is one of the major factors currently deteriorating the 

quality of water bodies around the world, leading to eutrophication, which limits 

sustainable use of surface water resources [1]. The contamination of water bodies by P 

release from widely applied fertilizers, such as superphosphate, triple superphosphate, 

and mono- and diammonium phosphate, is one of the major sources of nutrients and 

pollutant of surface waters. Therefore, a considerable number of numerical models has 

been introduced to quantify the release of P from fertilizers [2]. However, current 

modelling frameworks developed for estimating P concentrations in runoff often fail to 

systematically account for input uncertainties. In this study, we employed a variance-

based Global Sensitivity Analysis (GSA) technique to address this issue. We show that 

the apparent precision in most P modelling studies of water quality results from 

neglecting various important uncertainties and are therefore prone to lack of robustness. 

As a case study, we used the Annual P Loss Estimator (APLE) [3] which is a popular 

empirical model. APLE is commonly implemented to predict release of fertilizer P on the 

soil surface when rain falls. This model is mainly driven by parameters representing 

different key physical processes related to precipitation, discharge, infiltration, and 

fertilizer use. Considering the severe uncertainties associated with these processes and the 

nonlinear nature of APLE, we investigated how several sources of uncertainty and their 

interaction contribute to model output variability. Our GSA results indicate that the 

estimated direct losses of fertilizer P in runoff dramatically turn into intervals that can 

span several orders of magnitude if the model input space is sufficiently explored. The 

results and insights gained from this study have important implications for improving 

fertilizer pollution management in the context of decision making.  

[1] W.J. Brownlie, M. A. Sutton, D. S. Reay, K. V. Heal, L. Hermann, C. Kabbe & M. B.

Spears. Global Actions for A Sustainable Phosphorus Future. Nature Food, 2(2): 71–74.

2021

[2] D. E. Radcliffe, D. K. Reid, K. Blombäck, C. H. Bolster, A. S. Collick, Z. M. Easton, ... &

D. R. Smith. Applicability of Models to Predict Phosphorus Losses in Drained Fields: A

Review. Journal of Environmental Quality, 44(2): 614–628. 2015.

[3] P. A. Vadas, L. W. Good, P. A. Moore & N. O. R. M. A. Widman. Estimating Phosphorus

Loss in Runoff from Manure and Fertilizer for a Phosphorus Loss Quantification Tool.

Journal of Environmental Quality, 38(4): 1645–1653. 2009
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Pesticide use is a major issue in sustainable agriculture and water quality. Therefore, it
is important to have the knowledge and the tools to best estimate the risks associated
with their use and propose appropriate corrective actions. The PESHMELBA model
developped by [2] aims at simulating processes involved in water and pesticide transfers
at the watershed scale, in order to compare scenarios of the landscape management and
its impact on the river quality. An important step in the journey to PESHMELBA’s
operational use is performing a thorough study on the model uncertainties. A sensitivity
analysis can help trace the output uncertainties back to its input parameters, verify the
model consistency with respect to the physical processes and enhance the understanding
of the modeled behaviour. However, the application of global sensitivity analysis (GSA)
to spatio-temporal environmental models can be very challenging and dependent on the
particular case studied. No universal methodology exists for performing GSA on spatio-
temporal models. Additionally, GSA methods have not yet been applied to distributed
pesticide transfer models.

In the case of the PESHMELBA model, the sensitivity analysis is particularly challeng-
ing. PESHMELBA is made up of coupled code units that represent interacting physical
processes simulating pesticide transfers and fate. Each code unit can be characterized
by its own resolution method and its own time step. This leads to a very heterogeneous
final structure, which is hard to analyse. Additionally, the PESHMELBA model is a
distributed model - the resolution is performed on each spatial unit individually. Then,
interactions between spatial units are integrated. The spatial aspect adds another layer of
difficulty to the sensitivity analysis, as spatial interactions should be taken into account
to interpret the results. Both the integration of various physical processes as distinct
code units and the spatial distribution of the model contribute to drastically increasing
the number of input parameters. Indeed, in the case studied, PESHMELBA counts 145
input parameters. The exploration of such a high dimensional input space is challenging
as it implies time consuming model evaluations.
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In this study, we propose a novel GSA methodology for the PESHMELBA model, taking
into account both its high dimensionality and spatio-temporal aspect. Two solutions were
taken to deal with the high dimensionality of the input space: (a) screening and (b) esti-
mating sensitivity indices via metamodels. The proposed methodology can be separated
in two conceptual steps. The first step deals with the temporal aspect of the outputs, by
studying each spatial unit independently. Thus, for one spatial unit at a time, sensitivity
indices are obtained for its whole output dynamics. This is done by calculating sensitivity
indices on the sum of scores of the functional outputs principal components [1]. In the
second step, the spatial aspect is considered. The sensitivity indices obtained for each
spatial unit are aggregated to the watershed scale by means of vector projections [3]. To
sum up, the proposed methodology consists in: (i) screening via the elementary effect
method on the principal components of the functional outputs, (ii) calculating sensitivity
indices of one spatial unit at-a-time through metamodels (polynomial chaos expansion or
random forest) and (iii) aggregating the sensitivity indices to a watershed scale.

Two different PESHMELBA outputs were studied, surface moisture series and pesticide
mass series. The methodology was successfully applied to surface moisture series and
proved its potential for improving knowledge on model behavior. The method is promis-
ing but still needs to be improved as results were less satisfactory for pesticide mass series
due to the complexity of the physical processes simulated and the non-linear interactions
between them.

Figure 1: Schema of the proposed methodology.

[1] M. Lamboni, H. Monod, and D. Makowski. Multivariate sensitivity analysis to mea-
sure global contribution of input factors in dynamic models. Reliability Engineering
& System Safety, 96(4):450–459, April 2011.

[2] E. Rouzies, C. Lauvernet, C. Barachet, T. Morel, F. Branger, I. Braud, and N. Carluer.
From agricultural catchment to management scenarios: A modular tool to assess
effects of landscape features on water and pesticide behavior. Science of The Total
Environment, 671:1144–1160, June 2019.

[3] L. Xu, Z. Lu, and S. Xiao. Generalized sensitivity indices based on vector projection
for multivariate output. Applied Mathematical Modelling, 66:592–610, February 2019.
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Sensitivity analysis is an important practice to aid our understanding of how complex
computational models are affected by their input parameters, and this topic has been
studied extensively in the literature (see, e.g., [1][2][3]). However, performing a sufficient
number of model evaluations to obtain accurate estimates can often be prohibitively
expensive. A common solution is to use a surrogate model, or emulator, that provides
reasonable approximations to the outputs of the true model but at significantly lower
costs [4]. But the computational benefits of surrogate-based sensitivity analysis come
with a loss in accuracy, since the difference between the surrogate and the true model will
usually lead to some amount of error in the estimated sensitivity. This begs the question:
how do we know when we can trust surrogate-based sensitivity analyses?

To answer this question, we introduce a new meta-method that can be combined with any
surrogate for any computational model, augmenting the surrogate-based point estimate of
the global sensitivity with a confidence interval so that the user can benefit from the com-
putational speed-up of using a surrogate while still getting rigorous and accurate bounds
on the true global sensitivity. We prove the asymptotic validity of our confidence interval
under essentially no conditions on the computational model or the surrogate (except the
existence of some moments), so it applies just as well to surrogates fitted via machine
learning as to surrogates based on quantitative or qualitative domain knowledge, such as
physically-based surrogates. While the validity of our confidence interval protects against
overinterpretation of inaccurate surrogate-based sensitivity estimates, we also prove that
the accuracy (width) of our confidence interval gets small as the surrogate’s accuracy in-
creases, so that when an accurate surrogate is used, the confidence interval we report will
correspondingly be quite narrow, instilling appropriately high confidence in its estimate.

Letting Y denote the model output, X the set of input parameters of interest, and Z
the complementary set of input parameters, we focus on the total-order sensitivity index,
E[Var(Y |Z)]/Var(Y ), which measures the total contribution of the set of inputs X both
directly and through interaction effects with Z [5]. We apply our method to various com-
putational models, including the Hymod and HBV hydrological models with Polynomial
Chaos Expansion and Artificial Neural Network surrogates, demonstrating that applying
our method with a high-quality surrogate provides tight bounds so that we know to trust
its estimate, while also providing wide bounds when the surrogate is inaccurate to insure
against overinterpretation.
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Sobol’ sensitivity indices are some of the most popular measures for the sensitivity of
model output to input. Several Monte Carlo algorithms for the Sobol’ indices have been
developed in recent years. Another approach is to use a surrogate model, such as polyno-
mial chaos expansion (PCE) [1], to estimate the Sobol’ indices. An advantage of surrogate
models is their reduced computational cost for computing the sensitivity indices. How-
ever, for high dimensional problems where a large number of expansion terms are required,
PCE could be less efficient than Monte Carlo in estimating sensitivities.

Monte Carlo control variate algorithms using PCE expansions were introduced in Fox
and Ökten [2]. In this work, we present some improved control variate algorithms using
Bayesian compressive sensing (BCS) [3]. We first compare the errors of the PCE and
BCS methods when they are used to estimate sensitivity indices of some test functions.
The results show that BCS yields better estimation and faster convergence with fewer
samples. We then compare the efficiency of the control variate algorithms with some
well-known Monte Carlo algorithms [4] for estimating lower and upper Sobol’ indices.
The results suggest that for problems where the input function is expensive to evaluate,
control variate Monte Carlo can have advantages over the other methods.

[1] B. Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability
Engineering & System Safety, 93(7), pp. 964-979. 2008.

[2] J. Fox, G. Ökten. Polynomial chaos as a control variate method. SIAM Journal on
Scientific Computing, 43(3), pp. A2268-A2294, 2021.

[3] S. Babacan, R. Molina, A. Katsaggelos. Bayesian compressive sensing using Laplace
priors. IEEE Trans. Image Process., 19(1), pp. 53–63, 2010.

[4] A. Puy, W. Becker, S.L. Piano, A. Saltelli. A comprehensive comparison of total-
order estimators for global sensitivity analysis. International Journal for Uncertainty
Quantification, 2020.
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In many industrial fields, physical phenomena are commonly modeled by numerical sim-
ulators. These simulation codes can take a high number (dozens, if not hundreds) of
uncertain parameters as input variables. Since computer-based simulation experiments
are time-consuming, the permissible number of runs is most often very limited. In this
context, the benefits brought by a preliminary global sensitivity analysis are twofold. On
the one hand, the screening step allows to select a smaller amount of influential inputs in
order to reduce dimensionality or to support the construction of a surrogate model. On
the other hand, the influence of each input variable is quantified and the associated rank-
ings provide a relevant piece of information that can be used in the sequential building
process of a metamodel as in [4]. In view of these two purposes, total-order Sobol indices
are often regarded as the most adapted indicators. Unfortunately, unlike their first-order
counterparts, their estimation requires a too large number of simulations.

To remedy this difficulty, a new class of sensitivity measures built upon the theory of
reproducing kernel Hilbert spaces (RKHS) has emerged over the last decade [1]. Each
input variable is assigned a continuous positive definite kernel and is equipped with the
related RKHS. The same is done for the output variable. The distance between the
joint input-output bivariate distribution and the bivariate distribution obtained under
independence is measured through the distance of their respective embeddings in the
tensorized RKHS, which leads to the Hilbert-Schmidt Independence Criterion (HSIC) [3].
Since HSIC indices can be expressed by means of kernel-based statistical moments, their
estimation can be achieved at minimal computational cost and without estimating the
joint input-output distribution. However, HSIC indices are often blamed for their lack
of interpretability because their sum is not equal to 1. As a consequence, they do not
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fit into the advantageous framework that goes with analysis of variance (ANOVA). To
bridge this gap, it has been recently proved that the use of orthogonal kernels enables an
ANOVA-like decomposition for HSIC indices [2]. When the input variables are uniformly
distributed, Sobolev kernels (parametrized by a smoothness parameter r) match all the
required conditions. They allow to define higher order HSIC indices (especially total-order
HSIC indices) and therefore to rigorously separate main effects and interactions.

The main objective of this work is to provide new insights into Sobolev kernels which
have indeed been very few studied so far. First, we demonstrate that Sobolev kernels are
characteristic. This ensures that the nullity of Sobolev-based HSIC indices is equivalent to
independence. Then, another notable contribution of this work is the identification of one
explicit feature map for Sobolev kernels, which may help the user understand the spectrum
of dependency patterns that can be captured by this novel HSIC index. As with most
kernels, the canonical feature map (resulting from Aronszajn’s theorem) is uninformative.
An additional pitfall comes from the fact that Sobolev kernels are not shift-invariant,
which prevents the use of Bochner’s theorem and the following characterization in terms
of Fourier transform. Instead, another kind of feature map stems from Mercer’s theo-
rem which asserts that any continuous kernel on a compact set may be rewritten as an
infinite sum that only implies the eigenvalues and eigenfunctions of the corresponding
kernel integral operator. This key result discloses a feature map that sends the unit in-
terval into the Hilbert space of real-valued square-summable sequences. The eigenvalue
problem arising from this new feature map is tackled in two different ways. Firstly, we
investigate the benefits of kernel feature analysis where eigenvalues and eigenfunctions are
estimated from Gram matrix simulation. It allows to visualize eigenfunctions and some-
times to come up with closed-form candidate functions. Secondly, we demonstrate that
the eigenvalue problem is equivalent to a Cauchy problem consisting of a linear homo-
geneous ordinary differential equation with constant coefficients and a sufficient number
of boundary conditions. Then, two situations deserve a specific study. When r = 1, an
exact analytical solution is available. On the contrary, when r = 2, the Cauchy problem
cannot be completely solved. A solution in the form of a linear combination of analytical
functions is obtained but the coefficients cannot be retrieved. An asymptotic approxi-
mation is then derived to accurately estimate small eigenvalues while robust numerical
resolution is achieved by use of a semi-analytical adhoc calibration algorithm.

[1] Sébastien Da Veiga. Global sensitivity analysis with dependence measures. Journal

of Statistical Computation and Simulation, 85(7):1283–1305, 2015.

[2] Sébastien Da Veiga. Kernel-based ANOVA decomposition and Shapley effects: appli-
cation to global sensitivity analysis. arXiv preprint arXiv:2101.05487, 2021.

[3] Arthur Gretton, Olivier Bousquet, Alex Smola, and Bernhard Schölkopf. Measuring
statistical dependence with Hilbert-Schmidt norms. In International conference on

algorithmic learning theory, pages 63–77. Springer, 2005.

[4] Amandine Marrel, Bertrand Iooss, and Vincent Chabridon. Statistical identification
of penalizing configurations in high-dimensional thermalhydraulic numerical experi-
ments: the ICSCREAM methodology. arXiv preprint arXiv:2004.04663, 2020.
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The aim of applying global sensitivity analysis methods (GSA) at simulation models is to characterise 
the impact that changes in the model input parameters have on the model output. GSA is a diagnostic 
tool that can guide model calibration and validation, support the prioritisation of efforts for uncertainty 
reduction or help with model-based decision-making (Pichery C., 2014 [1]; Song et al., 2015 [2]; 
Sarrazin et al., 2016 [3]).  
 
As available processing power has increased, GSA has been steadily more utilised among building 
energy modellers, especially at individual building level (Tian, 2013 [4]). At building stock level, 
however, GSA has only scarcely been used (Fennell et al., 2019 [5]). Yet, several stock models are being 
used for decision and policy making. Even fewer studies investigated the performance of GSA at stock 
level (e.g., Cheng et al., 2011 [6]; Ascione et al., 2017 [7]), which leaves a huge gap in application at 
scale. 
 
No model can be considered as a perfect representation of the world around us. All models inevitably 
contain uncertainty (Refsgaard et al., 2004 [8]). The gaps in our knowledge are bridged by assumptions, 
probability distributions, expert opinion, best guesses and a variety of other techniques (Gorris & Yoe, 
2014 [9]). At small scale, modellers can generally rely on detailed high-quality data and less (critical) 
assumptions need to be made. At stock level, fewer and less detailed input parameters are generally 
available and the quality of the data is not always guaranteed. Furthermore, the complex physical energy 
equations (typically used at small scale building energy models) have to be simplified and generalised 
due to input parameter shortage and/or to allow for acceptable model computation times. 
 
Hence, due to the high computation times necessary to perform a reliable GSA at scale and input data 
absence and/or shortage or a lack of GSA knowledge, researchers performing GSA also often limit the 
SA scope and/or computation time of their study by reducing the building stock size (i.e., the number of 
buildings in the stock) used for building stock model GSA as well as the number of model evaluations. 
The consequences of such constraints are a possibly increased uncertainty in the model output results 
and a reduction in GSA quality since convergence might not be reached. 
 
Therefore, this study aims to broaden the knowledge of global sensitivity analysis application on 
building stock level by application of the Sobol’ SA (Sobol’, 1990 [10]), the Morris [11] method and 
DGSM [12] at an internally developed bottom-up building stock model (Delghust, 2015 [13]; Delghust 
et al., 2015 [14] [15]), based on ISO 13790 (ISO, 2007 [16]). The study will elaborate further on the 
required stock size, comparison of the model output of the three methods and to-be-expected uncertainty 
ranges for the model output and SA indices. Additionally, in order to confirm the robustness of SA 
results, the study will further check and elaborate on model convergence criteria. 
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The study is part of the IEA EBC Annex 70 on Building Energy Epidemiology (IEA EBC, 2017 [17]), 
where a group of research teams participated in a co-ordinated investigation to take existing GSA 
methods and apply them to their distinct stock models and datasets in a first attempt to quantify added 
value of GSA for building stock modelling. Through this process the teams aimed to examine: 
 

• The challenges of defining input parameter uncertainties for large-scale BES models and 
collecting appropriate data. 

• The applicability of different SA techniques in terms of robustness of results, quality assurance 
and computational cost. 

• Key drivers of uncertainty in the models. 
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Over the past four years, an informal working group has developed to investigate existing 

sensitivity analysis methods, identify best practices, and examine new sensitivity analysis 

methods being developed. The focus is on the use of sensitivity analysis in case studies involving 

geologic disposal of spent nuclear fuel or nuclear waste. We have developed multiple applicable 

case studies to use for testing ideas and making comparisons.[1] Four of these case studies are 

discussed: the GRS clay case, the SNL shale case, the Dessel case, and the IBRAE groundwater 

case. We present the different sensitivity analysis methods investigated by various groups, the 

results obtained by different groups and different implementations, and summarize our findings. 

The case studies focused on repository models for underground disposal of nuclear waste. The 

four case studies typically included things such as a waste form (canister or steel drum encasing 

the waste), an engineered buffer such as bentonite or concrete, and modeling of a natural system. 

The processes modeled in the case studies included waste package degradation, radionuclide 

dissolution, radionuclide sorption and precipitation/ dissolution, radioactive decay, and 

radionuclide transport via advection and diffusion.  The number of uncertain input parameters 

ranged from 6 to 20 in these case studies.  The outputs included time-series data (e.g. radionuclide 

concentrations as a function of time and/or spatial location), dose rates, fluxes, etc.   

The participating groups used a large variety of sensitivity analysis methods: scatterplots, simple 

correlation coefficients, rank correlation coefficients, standardized regression coefficients, main 

and total effects variance-based Sobol’ indices estimated by methods such as EASI, RBD-FAST, 

distribution-based methods such as PAWN, graphical methods like CUSUNORO, and others.  For 

each geologic case study, multiple groups presented their results using different sensitivity 

analysis methods and/or different implementations of the same method. The breadth and scope of 

the case studies as well as the number of methods used provided a rich environment to study and 

compare results. 
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We found that the first order variance-based index estimates can be easily generated from 

observational data (i.e. existing data which were not generated by prescribed sampling schemes) 

using a variety of approaches and are one of the preferred SA approaches. Linear and rank 

correlation coefficients and regression approaches continue to be used and are informative. More 

advanced methods show results mostly consistent with simpler methods but there are important 

differences. Graphical methods such as CUSUNORO also provide additional visualization which 

can show influences over the range of a variable.  

We found consistency between the linear sensitivity measures (correlation and regression 

coefficients) calculated by the different partners but sometimes the variance-based sensitivity 

indices did not rank the important variables in agreement with the linear sensitivity measures. 

Also, there were more differences in rankings seen across the variance-based sensitivity indices 

from different methods, such as EASI/RBD-FAST, EFAST, PCE and RS-HDMR.  Note that some 

of the variance-based methods make direct use of the simulation results for calculating the 

sensitivity indices while other methods use them to train surrogate or metamodel approximations 

of the simulation. All the methods used in this study relied on fixed data sets generated by the 

case study owners: specialized sampling of the simulations was not possible.  

Parameter rankings obtained by Sobol’ method are mostly consistent among different sample 

sizes and different surrogate models, however, there are often visible numerical issues for small 

sample sizes such as: negative main indices or conversely main indices slightly higher than total 

indices for parameters with minor or no significance, or sum of main indices more than one. This 

can be due to insufficient samples to accurately calculate the integrals defining the terms in the 

Sobol’ index calculations and/or surrogate inaccuracies. We note that the choice of sampling 

method is of paramount importance to the resulting accuracy of both surrogate models and values 

of Sobol’ indices.  

In summary, these four cases provided a realistic set of data to study the differences in sensitivity 

analysis methods and implementations.  We plan to continue this work with even more 

challenging case studies of geologic repositories, with a focus on time-dependent, highly 

nonlinear and/or non-monotonic behavior and inclusion of features such as spatial heterogeneity 

of fracture fields.  
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Successful drug research and development (R&D) requires tremendous time and financial 

resources. Achieving one approved drug in the United States (US) can take over a decade 

[1] and can cost more than $1.3 billion [2]. Mechanistic mathematical models can 
substantially reduce the time and cost of drug development. These models are known as 
quantitative systems pharmacology (QSP) models in the field of pharmacometrics. An 
early example of a QSP model for type 2 diabetes reduced an estimated 40% of the time 
and 66% of the cost of a Phase 1 trial [3]. QSP models also have the potential to 
substantially improve efficacy and safety [4]. QSP and other mechanistic systems models 
are thus increasingly used to support decisions in R&D, including regulatory decisions.

Along with this increase in use, assessing the predictive capability of such models is 

increasingly important. Several frameworks have been proposed for the development of 

QSP models, but few have focused on prediction assessment. In our work [5], we introduce 

a framework that focuses on model evaluation, which extends and builds on existing 

frameworks for model development. We provide recommendations for how and when 

various evaluation methods should be applied, including consideration of the underlying 

assumptions of specific analysis methods and their appropriate applications. These include 

sensitivity and identifiability analyses, as well as validation and uncertainty quantification. 

Many of these methods have been used successfully in other fields.  

In this presentation, we will focus on how these methods are applied specifically to QSP 

model evaluation. For example, sensitivity analysis can be valuable for the planning and 

prioritizing of in vitro and in vivo experiments to obtain better estimates of influential 

parameters, in order to improve confidence in QSP model predictions. Sensitivity analysis 

also provides a method for reducing the number of free parameters in a model. 

Noninfluential parameters can be fixed (or “frozen”) to nominal values without 

substantially impacting model output predictions. This reduction in the number of free 

parameters enables more-thorough exploration of the subspace of influential parameters, 

providing greater confidence in model output predictions, and can provide a basis for QSP 

model reduction [6]. The relative influence of input parameters can also be used to 

prioritize potential therapeutic targets in drug discovery [7]. We also share examples in the 

pharmacometrics setting which demonstrate the misleading results that can be obtained 

when inappropriate analyses are applied.   68
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Due to their highly nonlinear, non-monotonic or even discontinuous behaviour, final 

repository models may contain many parameter interactions associated with and/or 

triggered by the various uncertainties. Accordingly, by analysing parameter interactions, 

uncertainties of these models may also be better understood and may be reduced. 

 

Polynomial Chaos Expansion (PCE) is a widely used approach in metamodeling [1]. 

Usually only a few terms are relevant in the PCE structure. The Bayesian Sparse PCE 

method (BSPCE) makes use of sparse PCE. Selection of the proposed PCE structure is 

based on a Bayesian approach using the Kashyap information criterion for model selection 

[2]. It allows efficient estimation of Sobol’ sensitivity indices of the first and total orders 

(SI1 and SIT). We recall that SI1 represents the specific influence (or main effect) of one 

parameter on the model and SIT embodies the total effect of one parameter on the output 

in interactions of any order with all other parameters. 

 

In this work, we tested the performance of the BSPCE method on the basis of a time-

dependent model for contaminant release from a final repository in a clay formation, using 

random and quasi-Monto Carlo sampling. Although this model has a smooth behaviour, its 

analysis is still quite challenging. We analysed the time-dependent output with two 

approaches for sensitivity analysis, namely the pointwise and generalized approaches [3]. 

With the pointwise approach, the output at each time step is analysed independently. The 

generalized approach considers averaged output contributions at all previous time steps in 

the analysis of the current step. As a quasi-Monto Carlo sampling method, we utilised the 

LpTau sampling more commonly known as sampling using Sobol’ sequences. We 

evaluated the model output with samples of different sizes, drawn with both sampling 

methods. 

 

We compared the results for SI1 obtained with the EASI method [4]. EASI is a Fourier-

based technique for the computation of the SI1 indices.  

 

Attained SIT results were compared with the Random-Sampling High Dimensional Model 

Representation (RS-HDMR) metamodeling approach. In this approach, the ANOVA-

HDMR expansions is truncated after the second order. The truncated terms are then 

approximated by orthonormal polynomials (Zuniga et al [5]). Consequently, by design, for 

a specific parameter, SIT in this method is a sum of SI1 plus all corresponding SI2’s. RS-

HDMR also belongs to the group of PCE methods. In this work we used the SobolGSA 

software [6,7] which contains both the RS-HDMR and BSPCE methods. 
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While the SI1 results of BSPCE are in good agreement with those from EASI and also with 

the values calculated by RS-HDMR, the SIT results differ between BSPCE and RS-

HDMR. Although the SIT importance ranking of the different parameters obtained by the 

two metamodeling methods is the same, the SIT curves differ in shape and magnitude. This 

might, at least in part, be due to the different assumptions and behaviour of the numerical 

approaches, but it can also be a hint to the existence of relevant higher-order interactions 

since RS-HDMR neglects all orders higher than 2. 

 

Previous results showed that for most direct methods as well as for the RS-HDMR 

metamodeling method, quasi-random LpTau sampling requires fewer runs to provide 

stable results than random sampling. This, however, does not seem to be the case for 

BSPCE. At least from the results obtained for the considered case one cannot deduce a 

significant superiority of LpTau above random sampling, neither for the pointwise nor for 

the generalised approach. 

 

In contrast to the pointwise approach, the generalised approach takes account of the total 

history of sensitivity, so that typically the sensitivity curves reach nearly stable values at 

some time. At early times, the curves proceed similarly as those of the pointwise approach 

but reach medium, nearly constant values at the end. At late times, the total output variance 

is small, so that the relative contributions of the different parameters or parameter 

combinations do no longer play an essential role if evaluated in this way. For the 

generalised approach, the performance of the BSPCE method is the same as for the 

pointwise approach. 
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Abstract

The pervasive use of scienti�c simulators requires approaches for pro-
viding transparent accounts of uncertainties in modeling assumptions and 
input parameters [5]. Such methods are collected under the name of prob-
abilistic sensitivity analysis [4].

Methods based on linear regression and correlations are in wide use. 
However, they do not provide a �t-for-all-purposes solution. Variance-
based methods extend the notion of a non-linear goodness-of-�t measure, 
providing information on the functional dependence on input assumptions. 
Distribution-based methods drive this idea further by measuring the dis-
tance between the present state of knowledge and the state of knowledge 
after information about one or more uncertain inputs has been received. 
As underlined in [3], the majority of state-of-the-art methods have been 
developed for univariate output responses and probabilistic sensitivity 
analysis becomes challenging when the output is a multivariate random 
vector, spatially or temporally distributed.

We investigate the use of the theory of optimal transport (OT) [1, 6] to 
address the probabilistic sensitivity analysis of multivariate output prob-
lems. We discuss theoretical aspects �rst. We show that, in the multi-
variate elliptical case, a closed form expression for OT-based sensitivity 
measures is found via the Wasserstein-Bures metric. The resulting sensi-
tivity measure subsumes the variance-based sensitivity indices introduced 
by [2]. We address numerical quanti�cation next and cast the estimation 
in a one-sample (or given data) context. We provide the explicit data 
driven formulation for the OT problem both in the Kantorovich and in 
the entropic versions. We show that given-data estimators are consistent, 
provided that the OT solution algorithm is consistent. From an algorith-
mic viewpoint, the estimation of OT-based global sensitivity measures 
requires the sequential solution of data-driven OT problems. This might 
be a computationally challenging task: We compare OT solvers based on 
partial reorderings, on the dual-simplex method, and on the Sinkhorn it-
erative approximation. We carry out a series of numerical experiments 
for analytical test cases and apply the �ndings to a well known simulator 
with a large output dimensionality. Overall, in the context of computer 
experiments, the size and sequential nature of the calculations pose a chal-
lenge to current algorithmic implementations, leading them at the edge of 
the most recent research e�orts in the OT-solution stream. At the same 
time, the use of the Wasserstein-Bures metric o�ers an elegant as well as
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numerically e�cient new approach to the probabilistic sensitivity analysis
of multivariate responses.
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In this work, we present a novel boosting algorithm for regression problem (called bOOstd)
and its use as meta-model for performing sensitivity analysis of computer models.

Boosting tries to build an accurate (or strong) predictor by combining several weak
predictors from a given learning dataset. It was introduced in [1, 2], but it made a
significant leap forward with the introduction of Adaboost for binary classification
problems [3]. In [3], Adaboost was also generalized to handle multi-class (called
Adaboost.M1 and M2) and regression problems (Adaboost.R). Subsequently, boosting and
Adaboost have been studied intensively. However, there are still some open questions
related to the Adaboost generalization error and how to extend it in a simple and optimal
way in the continuum.

Our bOOstd algorithm tries to overcome some limitations related with the use of boosting
methodology in regression setting (it is very similar to Adaboost, very simple to
implement and it is able to manage hypotheses with error > 1

2
). A full description of this

algorithm in machine learning framework is in available upon request to the author of [4]
(its theoretical proprieties, implementation, and first experimental results).

Some theoretical and practical characteristics of bOOstd suggest to use it as a meta-model
in sensitivity analysis using different weak learners and different estimators for Sobol’
indices. In particular we explore two strategies:
1. bOOstd with low-order PCE (Polynomial Chaos Expansion [5]) as weak learner,
2. we use in bOOstd neural networks (or others equivalent learners) as a weak learner.

The metamodels so obtained are then coupled with the Monte Carlo estimator recently
introduced in [6, 7] to compute the Sobol’ indices. Comparison of the two strategies will
be carried out by application on well-known GSA benchmark functions.
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ABSTRACT 

 

Global sensitivity analysis (GSA) is now playing an increasingly prominent role in the 

development and assessment of complex simulation models. Among its other uses, GSA is widely 

employed to generate insights into the contributions of individual model inputs, or sub-groups of 

inputs, to the variations in the output of a mechanistic model (Saltelli et al., 2019). However, when 

such models fall short of explaining a particular process phenomenon, sensitivity indices derived from 

these models become unreliable. One good example is nitrous-oxide emissions (N2O) from 

wastewater treatment plants (WWTP), for which the mechanistic understanding is still in its 

infancy(Daelman et al., 2015;Sin and Al., 2021). The recent breakthroughs achieved in deep learning 

(DL), on the other hand, offer an exciting possibility to bring new light to such poorly understood 

process phenomena. To this end, here we present a new software tool, named deepGSA, incorporating 

well-established variance-decomposition-based global sensitivity analysis methods, such as Sobol 

sensitivity indices, with the plant data-driven deep learning modeling techniques.  

 

The deepGSA aims at enabling non-specialist practitioners to leverage DL-based models for GSA 

application purposes. To this end, the tool builds on an earlier GSA framework of the authors, 

easyGSA (Al et al., 2019), and is based on a recently proposed framework for DL-based and big data-

driven process modeling (Hwangbo et al., 2020). By using these two frameworks, the deepGSA 

streamlines a number of tasks into a deep learning pipeline, such as data cleaning and preparation, 

model building and discrimination, model validation, Monte Carlo simulations, Sobol sensitivity 

analysis, Derivate-based global sensitivity analysis and effective visualizations of GSA results. The 

capabilities of the tool are highlighted with a case study from WWTPs concerning study  of 

nitrogendioxide (N2O) emissions which is a potent greenhouse gas. For that purpose, a one-year-long 

dataset collected from four of the biological reactors of the Avedøre WWTP of Copenhagen 

(Denmark) (Chen et al., 2019) was used to train DL-based models. By using the tool, a number of 

candidate DL network topologies were evaluated, and a DL-model with satisfactory predictive 

performance (R2
test>0.90) was obtained. By using this model in a parallelized Monte Carlo simulations 

procedure, the Sobol sensitivity indices were calculated so as to pinpoint underlying factors (process 

disturbances and conditions) related to the emissions of N2O. Several sensitivity analysis techniques 

were applied to understand and explain which inputs are driving the greenhouse gas emissions.  As 

regards the variance decomposition methods, the resutls indicate that Sobol total sensitivity index 

(STi) is an appropriate metrics to compare input/factor importance. Furthermore accounting for 

dependency among inputs, only influences the main effects (Si) calculations and not the STi. Hence 

STi is recommended a robust measure for relative importance of the inputs for this particular study. 

One disadvantage of variance based decomposition methods is that they do not indicate the direction 

of the effects of the inputs on the outputs (namely positive or negative influence) as Si and STi both 

are a ratio of the conditional variance of input on the output over total variance of outputs. 

 Derivative based sensitivity analysis also known as local elementary effects,  in reference to Morris 

elementary effects, can reveal the sign (negative versus positive) of the inputs on the model outputs 
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which provides a valuable information in engineering/scientific studies. When performed in a global 

setting (e.g. Sobol, I. M., & Kucherenko, S. (2010)), properties of the distribution of these effects can 

be used to study and rank importance of factors. In this study, the distribution of the values of the said 

derivative functions revealed a pattern characterized by signifcantly heavy/fat tails in both negative 

and positive scales of function values (see the figures below). Evaluating and benchmarking a number 

of distribution functions from probability for heavy tails, t Location-Scale distribution was found 

closest to describe these fat tails. The normal distribution failed to described the tails naturally and 

this presents an interesting challenge to the theoretical studies generalizing the sensitivity measures 

based on DGSM.  We remark that we have used 100,000 samples (since DL was very fast 

computationally) for quasi monte carlo sampling for computing the sensitivity functions. 

From interpretation point of view, the results indicate that all of the inputs can have a positive or 

negative contribution depending on the values of other inputs. The green house gas emissions is 

clearly a nonlinear phenomena. Looking at the sensitivity measures, the mean values of DGSM and 

Sobol total index STi were in agreement with each other and revealed that T (temperature), nitrate 

(NO3) and NH4 (ammonium) and Qair (aeration rate) are ranked as important factors. These 

important rankign was confirmed by Sobol total indices (STi). On the other hand, interpreting the 

results using the location parameter of the t Location-Scale distribution (similarly the higher the 

location value, the higher the importance of the factor), it revealed that nitrate, ammonia and Qair is 

by far the most important inputs that explains the extreme/rare events in the outputs. While 

temperature and DO and Qinf has location parameter as almost zero indicating that these inputs do not 

have much explanation to the extreme values of the outputs. These results poses an interesting 

question namely when the shape of the distribution of the effects  (the derivative of the fucntion wrt 

inputs) is not normal but rather have long tails, how should the factors importance be analyzed? 

Pragmatically speaking the proposed sensitivity measures in the literature and the new interpretation 

proposed here using t Location-Scale distribution are complementary to each other. One measures 

looks at effects that can be explained by a normal distribtion, while the latter focuses on explaining 

the tails. On another note the deepGSA tool faciliates application of senstivity analysis to industrially 

relevant large datasets where modeling is not necessarily available. 
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Physical, chemical, and biological processes are often viewed as closed systems consisting
of controlled inputs and observed outputs. These systems can be mathematically analyzed
by formulating them as a set of equations that define supposed relations between the
inputs and the outputs using constants that are called parameters. We consider the
scenario in which we have observed data from experimental trials of such a system. Then,
a theoretically justifiable model that is validated using observed data, can be used as
evidence for underlying model hypotheses and can simulate predictions for practically
feasible situations that were not accounted for in the experiment setup. Then, it is to be
expected that the model behavior will depend on the choice of values of at least some of the
model parameters. The values of the parameters might be either measured experimentally
or estimated by minimizing error between model simulations and observed data. However,
both cases often have various sources of uncertainties. In the former case, there might be
a lack of precision and accuracy in the measurement techniques. The latter case can be
further split as follows—the model cannot account for all of the variability in the data
due to a lack of complete knowledge, i.e. the degree of freedom of the model is less than
that of the data; the observed data might be insufficient, i.e. the degree of freedom of
the model is more than that of the data; the algebraic structure of the equations might
impose impossibility of a unique solution for the parameters regardless of the nature of the
observed data; and the observed data is noisy due to measurement noise. As a result of all
these cases, the computed set of parameter values that match the model with the observed
data can be a combination of noisy manifold(s) and noisy point(s) in the parameter space.
In our work, we use the approach of viewing this noise or uncertainty in the parameter
estimates as statistical distributions on parameters. Then there are two generals aims,
to reduce the variance in distributions of parameter estimates, where possible, and to
explain the effects of variance in the parameters on the model output. Both of these
aims can be approached by analyzing the effects of variation of parameters on the output,
also called sensitivity analysis. However, studying the dependence of higher moments
of conditional distributions of the output on variations in parameters is not included in
most senstivity analyses, possibly due to a high computational cost of estimating higher
moments. In this work we claim that analysis of higher moments can possibly reveal
useful information for both of the general aims, define measures to quantify this analysis,
and prove a mathematical relation that can make it computationally feasible.
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Sobol’ indices (SIs)[1] are well-known sensitivity measures that are applicable to non-
linear and non-monotonic models. Moreover, variations in all of the parameters, in a
given parameter regime, are considered simultaneously. The SIs are usually reported as
total SIs, which is further split into first-order and additional SIs. Total SIs are often used
to reduce dimensionality of the parameter space and first-order SIs are used to indicate
parameters that should be measured with certainty if a robust QoI is desired. These
approaches can possibly reduce uncertainty in parameter estimates. However, an analysis
of high additional SIs is often ignored. In this work we proved that additional SIs are
related to all of the higher moments of conditional distributions of the QoI. We show that
this relation can lead to inferences that make it computationally feasible to analyze higher
moments of conditional distributions. We quantify this analysis by defining γ-measures
pertaining to studying the dependence of expected value, variance, skewness, and kurtosis
on variation in parameters. Each of these statistics is linked to a geometrical feature of
the shape of the underlying statistical distribution, which can in turn have practical
implications. We summarize by providing a more comprehensive and computationally
feasible framework of sensitivity analysis using both Sobol’ indices and γ-indices, that
can provide deeper insights into the relationships between model output and variance in
parameters. As an illustration, we analyze the popular non-linear non-monotonic Ishigami
function using Sobol’ indices and γ-indices.

[1] Sobol’, Ilya M Sensitivity estimates for nonlinear mathematical models. Mathematical
Modelling and Computational Experiments, 1 (4): 407–414, 1993.
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clementine.prieur@univ-grenoble-alpes.fr

A5 Delphine Sinoquet
Applied Mathematics Department, IFP Energies Nouvelles, France,

delphine.sinoquet@ifpen.fr

Nowadays, many inversion issues are present in industry. These problems aim to find
all sets of parameters such that a certain quantity of interest respects a given constraint,
for example remains below a threshold. In the field of floating wind for instance, a pre-
calibration step consists in estimating model parameters that fit with a given accuracy
the measured data (e.g. accelerations).

An effective way to solve this problem is to use Gaussian process meta-models (Krig-
ing) with a sequential Design of Experiment (DoE) and an inversion-adapted enrichment
criterion, such as the popular Bichon (also known as Expected Feasibility Function [3])
or deviation number [5] (denoted U) criteria. It is also possible to use the more elaborate
class of SUR (Stepwise Uncertainty Reduction) criteria [2]. In addition to taking into ac-
count the evaluation points and the available simulations, they quantify the uncertainty
reduction which can be achieved by the addition of the new point. The goal of this work
is to present a SUR version of the Bichon criterion, to find an explicit formulation and to
compare its performances to some state-of-the-art criteria.

As a reminder, noting X the design space (compact), xn+1 the new added point
to the DoE and T the fixed threshold in the inversion, the Bichon criterion is defined as:

xn+1 := argmax
x∈X

EFF(x) with EFF(x) := E
[(
ασn(x)− |T − ξ(x)|

)+ ∣∣Fn

]
. (1)

ξ represents the Gaussian process meta-model of the true simulation, Fn the σ-algebra
generated by the n first observations, σn the kriging standard deviation and α a fixed
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positive number. Intuitively, the EFF(x) quantity is interpreted as the minimal distance
of the Gaussian meta-model at point x with respectively the quantities T − ασn(x) and
T + ασn(x), all multiplied by the indicator of ξ(x) ∈ [T − ασn(x), T + ασn(x)].

From a theoretical point of view, the proposed SUR Bichon strategy is defined from
a measure of uncertainty related to the Bichon criterion (integral of the Bichon criterion
on the design space) as follows: xn+1 ∈ arg min

x∈X
Jn(x) with

Jn(x) := E
[ ∫

X
E
[(
ασn+1(z)− |T − ξ(z)|

)+ ∣∣∣Fn+1

]
dPX(z)︸ ︷︷ ︸

Hn+1

∣∣∣∣Xn+1 = x,Fn

]
. (2)

PX is a finite measure given on X (e.g. Lesbesgue measure), Hn+1 a Fn+1-measurable
uncertainty measure, Xn+1 the random variable corresponding to the n+ 1th evaluation
of the DoE and Fn+1 the σ-algebra generated by Xn+1, ξ(Xn+1) and Fn. In addition,
by successively using Fubini’s theorem and tower property of conditional expectation, it
is possible to obtain a simplified formulation of the SUR Bichon criterion dependent on
mn(y), σn(y), T , α and σn+1(y), allowing an efficient implementation.

From a numerical point of view, performances of the SUR Bichon criterion are com-
pared to other classic criteria, on common test functions. One of the main measures of
comparison of the criteria is defined as the volume according to PX of the symmetric
difference between the estimator and the true excursion set. According to this measure of
comparison, the SUR Bichon criterion shows encouraging results compared to some other
conventional DoE enrichment criteria, like the SUR Vorob’ev criterion [4].

The future prospects for this work are adapting this criterion to more complex data
like functional uncertain input variables [1]. In this particular framework, the DoE will
have to be adapted.

[1] Reda Amri, Céline Helbert, Miguel Munoz Zuniga, Clémentine Prieur, and Delphine
Sinoquet. Set inversion under functional uncertainties with joint meta-models. 2020.

[2] Julien Bect, David Ginsbourger, Ling Li, Victor Picheny, and Emmanuel Vazquez.
Sequential design of computer experiments for the estimation of a probability of failure.
Statistics and Computing, 22(3):773–793, 2012.

[3] Barron J Bichon, Michael S Eldred, Laura Painton Swiler, Sandaran Mahadevan,
and John M McFarland. Efficient global reliability analysis for nonlinear implicit
performance functions. AIAA journal, 46(10):2459–2468, 2008.

[4] Clément Chevalier. Fast uncertainty reduction strategies relying on Gaussian process
models. PhD thesis, Universität Bern, 2013.

[5] Benjamin Echard, Nicolas Gayton, and Maurice Lemaire. Ak-mcs: an active learning
reliability method combining kriging and monte carlo simulation. Structural Safety,
33(2):145–154, 2011.
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Bayesian calibration has been applied in several case studies in the building sector and are 

proved reliable in terms of enhancing the accuracy of the building energy models (BEM). The 

idea is that it benefits from prior distributions that express our knowledge about model parameters 

and it updates them to posterior distributions given measured data available.  

Overparameterization due to the large number of model parameters is a common issue 

tackled when applying calibration. It means that different combinations of calibration parameters 

could result in the same model output. Moreover, calibrating a large number of parameters could 

be computationally intensive to such algorithms. Sensitivity analysis is normally applied to 

analyse the effect of all parameters on the model’s output and to calibrate based on the most 

influential parameters. However, the selected parameters might still be collectively unidentifiable 

even if each parameter is confirmed to be influential. 

Parameter identifiability is the concept of whether the model parameters can be uniquely 

inferred from the data. Correlation and interaction that might exist between the most influential 

parameters selected after a sensitivity analysis could make them unidentifiable. Thus, 

identifiablity analysis needs to be conducted before launching the calibration. Sensitivity-based 

identifiablity analysis that relies on the computed sensitivity indices allows to compute the 

collinearity of different parameter combinations and to re-rank the parameters considering their 

importance, correlations and interaction. This enables a further analysis concerning the acceptable 

number of parameters that can be considered for calibration. 

The studied building corresponds to the I-BB house (Concrete construction) of the INES 

(National Institute of Solar Energy) "INCAS" platform, located in Le Bourget-du-Lac in France. 

The interior surface area is 89 m² with two floors. The house was designed to match the 

performance of the "PassivHaus" label, thanks to strong insulation, very low thermal bridges, and 

high-performance glazing. The experimental campaign has been constructed to measure the 

temperature profile of the building under six different scenarios with separate or combined 

consideration of different physical phenomena.  

The building energy model COMFIE, developed by the centre for energy efficiency of 

Systems of MINES ParisTech was used to model the thermal behaviour of the building. The 

model constituted of 130 uncertain parameters on which sensitivity analysis is applied. 

RBD-FAST was selected in this paper due to its computational efficiency compared to 

other variance-based methods. A bootstrapping technique was conducted to analyse the variability 

of the sensitivity indices and the ranking of the parameters. The effect of the data sample size on 

the variability in the parameters ranking is also analysed. Fig. plots the variability in ranking the 

13 most influential parameters. It shows how the variability increases as the parameter is less 
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influential. It was also observed that the rank of the 6 most influential parameters stabilises with 

a data sample size of 2000. 

Figure 1: Variability in ranking the 13 most influential parameters

The identifiability analysis requires the selection of a collinearity index (CI) threshold 

below which the selected parameters are considered collectively identifiable. With a CI threshold 

taken 20, the maximum number of parameters that are confirmed to be identifiable is 7 as depicted 

in Fig.. That is that any combination of a larger size comprises of unacceptable degree of 

interactions and correlation. 

Figure 2: Collinearity index for different possible parameter combinations

The effect of this method is analysed by evaluating the performance of the whole 

calibration process in terms of the obtained accuracy in fitting the measurements and in well 

estimating the true values of the model parameters. 

A related topic is the maximum number of parameters above which over-parametrisation 

occurs during calibration. This is related to the identifiability issue since what causes over-

parametrisation is the huge interactions and correlations between the parameters. In this paper we 

investigate in depth how to select the CI threshold, that is that the degree of interactions permitted 

for undergoing inference without identifiability problems. 
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Decision-makers often confront uncertainties when determining their course of action. For
example, individuals save to cover uncertain medical expenses in old age [9]. Firms set
prices in an uncertain competitive environment [12], and policy-makers face uncertainties
about future costs and benefits when voting on climate change mitigation efforts [2]. We
consider the situation in which a decision-maker posits a collection of economic models
to inform his decision-making process. Each model formalizes the relevant objectives
and trade-offs. Within a given model, uncertainty is limited to risk, as a model induces a
unique probability distribution over possible future outcomes. In addition, however, there
is also ambiguity about the true model [1, 15].

In this context, we focus on the common practice in economics of estimating a subset of
the model parameters outside the model and allowing the decision-makers characterized
by the model to treat these point estimates as if they correspond to the true parameters.
This approach ignores ambiguity about the true model resulting from the parametric un-
certainty of the first-step estimation and opens the door to potential misspecification of
the decision problem. As-if decision-makers, those who use the point estimates to inform
decisions that would be optimal if the estimates were correct [18], face the risk of serious
disappointment about their decisions. The performance of as-if decisions often turns out
to be very sensitive to misspecification [22], which is particularly consequential in dy-
namic models where the impact of erroneous decisions accumulates over time [17]. This
danger creates the need for robust decision rules that perform well over a whole range
of different models instead of an as-if decision rule that performs best for one particular
model. However, increasing robustness, often measured by a performance guarantee un-
der a worst-case scenario, decreases performance in all other scenarios. Striking a balance
between the two objectives thus poses a significant challenge.

We develop a framework to evaluate as-if and robust decision rules in a decision-theoretic
setting by merging insights from the literature on data-driven robust optimization [6] and
robust Markov decision processes [4] with statistical decision theory [5]. We set up a
stochastic dynamic investment model in which the decision-maker takes ambiguity about
the model’s transition dynamics directly into account. Using the Kullback-Leibler diver-
gence [16], we construct ambiguity sets for the transitions that are statistically meaningful,
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computationally tractable, and anchored in empirical estimates [3]. Our work brings to-
gether and extends research in economics and operations to make econometrics useful for
decision-making with models [18, 7].

As an applied example, we revisit [20]’s seminal bus replacement problem, which serves
as a computational illustration in a variety of settings. In the model, the manager Harold
Zurcher implements a maintenance plan for a fleet of buses. He faces uncertainty about
the future mileage utilization of the buses. To make his plan, he assumes that the mileage
utilization follows an exogenous distribution and uses data on past utilization for its es-
timation. In the standard as-if analysis, the distribution is estimated in a first step and
serves as a plug-in for the true unknown distribution. Harold Zurcher makes decisions
as if the estimate is correct and ignores any remaining ambiguity about future mileage
utilization. We set up a robust version of the bus replacement problem to directly ac-
count for estimation uncertainty and explore the properties and relative performance of
alternative decision rules.

In econometrics, there is burgeoning interest in assessing the sensitivity of findings to
model or moment misspecification. Our work is most closely related to [13], who develops
a measure to assess the sensitivity of results by fixing a subset of model parameters prior
to estimating the remaining parameters. Our approach differs as we directly incorporate
model ambiguity in the design of the decision-making process inside the model and assess
the performance of a decision rule within a misspecified decision environment. As such,
our focus on ambiguity faced by decision-makers inside economic models draws inspira-
tion from the research program summarized in [11], which tackles similar concerns with a
theoretical focus. We complement recent work by [21], who works in a setting similar to
ours but does not use statistical decision theory to determine the optimal robust decision
rule. In ongoing work, [8] use statistical decision theory to structure policy decisions in
light of uncertainty about counterfactual policy predictions due to the remaining para-
metric uncertainty after the estimation of a model. Unlike [8], who conducts an ex-post
evaluation of alternative policy proposals using decision-theoretic criteria, we perform a
proper ex-ante analysis of competing decision rules. We evaluate each rule’s performance
under all possible parameterizations of the model and directly account for parametric
uncertainty in their construction. In operations research, there are only a handful of
applied examples in which data-driven robust decision-making is used in a dynamic set-
ting including portfolio allocation [23], elective admission to hospitals [19], scheduling of
liver transplantations [14], and the cost-effectiveness of colorectal cancer screening policies
[10]. To the best of our knowledge, none of these applications evaluates the performance
of robust decisions against the as-if alternative in a decision-theoretic framework.
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Variance-based global sensitivity analysis (GSA) provides useful measures, Sobol’ indices,
of how important individual input variables are to the output of a mathematical model.
Estimation of Sobol’ indices by traditional Monte Carlo methods can be infeasible for
computationally intensive models. An appealing approach is to instead use a surrogate
whose Sobol’ indices can be computed analytically. We propose the use of extreme learning
machines (ELMs), with a specific type of activation functions and a novel sparsification
approach, for fast GSA. We illustrate the e↵ectiveness of the proposed approach through
application to a GSA benchmark model problem and to a system of ordinary di↵erential
equations modeling a biochemical reaction network.
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With increasing adoption of Global Sensitivity Analysis as part of modelling workflow in
various domains with large models such as climate science or quantitative systems pharma-
cology, there is an urgent need for optimized and scale able GSA implementations. Such
optimization can come through both algorithmic improvements, in form of new methods
or modifications to existing methods, and through utilization of modern and extensible
scientific computing stack. GlobalSensitivity.jl [8] is a generalized GSA package written
in the julia [1] programming language which makes it capable of handling varied problems
due to composability offered by julia. The built-in support for parallelism allows anal-
ysis of large models with significant simulation overhead with ease for domain scientists
looking to use GSA. Currently GlobalSensitivity.jl supports the Sobol, Morris, eFAST,
Regression based, DGSM, Delta Moment, EASI, Fractional Factorial and RBD-FAST
GSA methods. This talk will cover a comprehensive tutorial of running various different
GSA methods and analysing their results using visualizations on the Lotka-Volterra dif-
ferential equation model using SciML’s [7] DifferentialEquantions.jl [6] package. Further,
there will be a focus on demonstrating use of GSA in Pharmacometrics by analyzing
some example PK/PD, PBPK and QsP models. For this purpose the talk will include
tutorials [3][4] focused on using Pumas [5] for running GSA and post processing results
to derive insights on a PK/PD model of Hepatitis-C Virus (HCV) [2] and a PBPK model
for Voriconazole [9].

[1] Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and Alan Edelman. Julia: A fast
dynamic language for technical computing. CoRR, abs/1209.5145, 2012.
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medicine, 30(10):1045–1056, 2011.

[3] PumasAI. Global Sensitivity Analysis on HCV model - https://tutorials.pumas.
ai/html/pkpd/hcvgsa.html, 2021.

[4] PumasAI. Global Sensitivity Analysis on Voriconazole model - https://tutorials.
pumas.ai/html/pbpk/vorigsa.html, 2021.
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Reliability analysis is concerned with determining the probability of failure of a system
subject to uncertainties. Often, knowing how sensitive a failure probability is to each of
the system’s uncertain inputs is as important as an accurate probability estimate. By
definition, failure events are rare events and thus reliability sensitivity is conceptually dif-
ferent from and computationally more demanding than sensitivity analysis of model out-
put (SAMO). Statistically dependent input uncertainties present an additional difficulty
in this framework. Such dependencies require discerning between variable interactions
produced by the probabilistic model describing the system inputs and the computational
model describing the system itself.

In the context of SAMO, [1] proposed a set of variance-based sensitivity measures that
discern between the total contribution of an input to the output variance (generated by
interactions in both probabilistic and computational model) and independent contribu-
tions (generated by interactions in the computational model only). The idea is based on
considering d (d is the number of inputs to the system) different isoprobabilistic trans-
formations from the space of dependent inputs to d spaces of corresponding independent
d-dimensional random vectors. These transformations are structured such that in each
transformation, one of the d variables is independent of all others and another depends
on all others (e.g., the Rosenblatt transform or the Nataf transform using a Cholesky
decomposition have this property). By performing d variance-based sensitivity analyses
on the d sets of transformed independent random vectors, it is possible to discriminate
between output variance contributions stemming from the computational and the proba-
bilistic model.

In our work, we extend this idea to reliability sensitivity analysis, i.e., we compute the in-
dependent and total contributions of all d inputs to the variance of the indicator function
of the rare event. [2] described how to compute variance-based sensitivity indices of the
rare event indicator using a set of failure samples only with independent inputs. We draw
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on this approach and show that by considering d different isoprobabilistic transformations
of a set of failure samples in the original space of dependent input variables to the d cor-
responding spaces of independent random vectors, we are able to recover the indices of [1]
for reliability sensitivity analysis. Our approach facilitates computing these indices with
a set of failure samples obtained as the byproduct of a single run of a suitable rare event
simulation method such as crude Monte Carlo importance sampling or subset simulation.
As opposed to [1], it is not necessary to repeat the sensitivity/reliability analysis d times.
We demonstrate the approach on various artificial test functions as well as engineering
problems.

[1] Thierry A. Mara and Stefano Tarantola Variance-based sensitivity indices for models
with dependent inputs Reliability Engineering & System Safety 107: 1–115-121, 2012.

[2] Luyi Li and Iason Papaioannou and Daniel Straub. Global reliability sensitivity
estimation based on failure samples. Structural Safety 81: 101871, 2019
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A simulation model is a rich and complex structure that maps between the input(s) and the output(s) [1]. It aims to 
replicate the workings and logic of a real system by using physical and/or statistical descriptions of the activities 
involved [3]. Consequently, no simulation model can be a perfect representation of the system it aims to emulate [25]. 
All simulation models inevitably contain uncertainty, which should be addressed and quantified as part of the quality 
assurance process of the model and as part of inferences. 
 
Uncertainty in modelling can be defined as “any departure from the unachievable ideal of complete deterministic 
knowledge of the system” (Walker et al., 2003). As the systems, being modelled, increase in scale and complexity, it is 
expected that the uncertainty in the model also increases (Langevin J., 2020). Though, a fair amount of simulation 
model outputs are expressed as a single value (Cerezo, 2017), which may yield misleading impressions about the 
certainty of model insights when used for inferences and/or policy making (Langevin J., 2020). 
 
In the literature, several different authors have addressed sources of uncertainty in simulation models in wording and/or 
schemes (Booth et al., 2012 [6]; Walker et al., 2003 [8]; Coakley et al., 2014 [9]; Oberkampf et al., 2002 [23]), however 
a general consensus in terms of uncertainty classification and related terminology does not appear to exist (Refsgaard et 
al., 2007 [28]). A review of 25 existing uncertainty classification schemes ([5]-[29]) highlighted a broad pattern with 
types of uncertainty being grouped according to where it occurs in the modelling chain: in the model inputs, the 
simulation model itself or the model outputs. 
 
In Figure 1, the different types of uncertainty in simulation modelling are categorised. In Table 1, a concise definition is 
given. 
 

 
Figure 1 - Types of uncertainty identified in existing uncertainty classification schemes. Types of uncertainty may be grouped by 
whether they relate to model inputs, the model itself, or model outputs.  
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Definitions 

Aleatory uncertainty: Uncertainty due to inherent or natural variation of the system under investigation. 
Epistemic uncertainty: Uncertainty resulting from imperfect knowledge; can be quantified and reduced. 
Model structural uncertainty: Uncertainty that arises from a lack of sufficient understanding of the system (past, 
present or future), that is the subject of the policy analysis, including the behaviour of the system and the 
interrelationships among its elements. 
Model technical uncertainty: The uncertainty generated by software or hardware errors. 
Model outcome uncertainty: Total uncertainty on the model simulation (so endogenous rather than exogenous as the 
other categories). 
Linguistic uncertainty: Uncertainty arising from language issues; can be quantified and reduced. 

Table 1 - Definition of the types of uncertainty categorised in Figure 1. 
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Uncertainty and sensitivity analysis has been recognized as an essential part of model 

applications. Global sensitivity analysis (GSA) is used to identify key parameters whose 

uncertainty most affects the output. This information can be used to rank variables, fix or 

eliminate unessential variables and thus decrease problem dimensionality. The variance-based 

method of Sobol' sensitivity indices (SI) became very popular among practitioners due to its 

easiness of interpretation. Computation of Sobol' indices using direct Monte Carlo method 

generally requires a large number of function evaluations to achieve reasonable convergence. 

Metamodel based methods have proved to be much more efficient especially for complex 

practical problems. In majority of cases metamodel are used only for computing GSA measures. 

In this work we used the Bayesian Sparse Polynomial Chaos Expansion method (BSPCE) 

implemented in SobolGSA was used for GSA and GO. BSPCE makes use of sparse PCE 

by selecting different PCE structures using a Bayesian approach with the Kashyap 

information criterion for model selection [1]. 

In many areas practitioners are interested in minimizing/maximizing quantities of interests. We 

developed a unified approach in which metamodels are used for both GSA and Global 

Optimization (GO). It was implemented in the software tool SobolGSA [2]. We note, that there 

are fundamental differences between these two problem. They are summarized in the table 

below using a model 1 2( ),  ( , ,..., )= = nY f X X X X X  as an example: 

Global Sensitivity Analysis Global Optimization 

Interpretation: random setting - X is a vector 

of random variables 

Interpretation: deterministic setting- X is a 

vector of inputs given in the deterministic 

domain 

Objective: study the effect of input 

uncertainty on the variability in the model 

output 

Objective: Search the global minima of f and 

the set of global minimizers X* 

In order to illustrate the developed approach we considered Membrane Enhanced Peptide 

Synthesis model (MEPS) [3],[4]. Peptides are biopolymers that control, direct, and coordinate 

inter- and intracellular communications and cellular functions in many living systems. We cross-

verified by experiment and sensitivity analysis, that the generation of truncated error sequences 

diminishes as extent of reaction increases, ascertaining that a vast majority of error sequences 

can be neglected in simulation. In addition, we showed that a double membrane system is  
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advantageous over single membrane due to higher retention of product, resulting in higher yield. 

Other process variables such as recycle ratio and diavolume are crucial in further optimizing the 

yield.  

Considered model has 9 uncertain parameters. It is known that the model structure and parameter 

distributions affect the results of GSA. We compared the results of GSA using two different 

distributions of uncertain paraments: 1) a uniform distribution assuming  +/- 20% variation 

around the parameter mean value μ; 2) a normal distribution assuming the standard deviation 

σ=μ/2. In both case we found that only two parameters, namely the rejection rate of Piperidine 

and the rejection rate of the final product are important, with the rejection rate of Piperidine 

being the most important in the first case and the rejection rate of the final product  in the second 

case. There are some not very significant interactions between parameters in the first case and 

strong interactions between parameters in the second case: the main effect Sobol’ index for the 

rejection rate of Piperidine is equal to 0, although its total effect index is close to 0.8. On the 

second stage we performed global optimization maximizing total peptide yield and verified the 

results by running the full model in gPROMS. Although there is some discrepancy between 

predictions based on metamodel and validation results obtained using the full model with the 

maximizer values, proposed approach gives a good guidance with regards to further directions of 

modelling and experimental work.   

Acknowledgements. We acknowledge the financial support of Eli Lilly and Company. 
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Significant amounts of pollutant are measured in surface water, their presence due in part
to the use of pesticides in agriculture. One solution to limit pesticide transfer by surface
runoff is to implement vegetative filter strips (VFS) along rivers. These buffer zones are
identified as the best management practices of choice for runoff mitigation to prevent
and limit the transfer of pollutants from agricultural fields to water resources. They
are mandatory or highly advised depending on the country and conditions. Since their
location is part of the farmer’s field, the sizing of these strips is a major issue. However,
to be efficient, they need to be properly designed, depending on the specific context in
which they are implanted (climate, soil, water table, etc.).

The BUVARD modeling toolkit was developped to design VFSs throughout France ac-
cording to all these local influencing factors [1]. Processes that drive the pesticide fate
are complex and interact : infiltration, surface runoff, sediment trapping, pesticide trans-
fer, etc., and are summarized through nonlinear equations and/or conceptual and/or
stochastic modeling. To represent most of them, BUVARD is composed of several models
centered around the numerical model VFSMOD [4], which quantifies dynamic effects of
VFS site-specific pesticide mitigation efficiency (see figure 1).

The way BUVARD is built (i.e., a chain of several models) implies a large set of parameters
that are difficult to measure (for the physical modeling) or to calibrate (for the conceptual
modeling). Furthermore, inputs and outputs are dynamic (for example, rainfall, surface
runoff, etc.), and inputs are either quantitative or qualitative variables. For all these
reasons, we get an expensive tool to use, and a high uncertainty, which has to be quantified,
particularly in the case of an operationnal tool. Metamodeling BUVARD is a priori a
relevant solution to decrease the cost and the complexity of the model, to help users
design VFSs that are adapted to specific contexts.

Added to the mixed qualitative and quantitative variables, that is not often taken into
account in surrogate methods, we have to deal with a huge number of zero values of

99



Figure 1: BUVARD toolchain, with inputs and outputs used to build the surrogate.

inputs and outputs, and to boundaries in which the main output has to range. In this
study, different methods are tested: (i) Mixed-Kriging, a Kriging method that was imple-
mented with a covariance kernel for a mixture of qualitative and quantitative inputs [3]
(ii) PCE, that was also adapted to qualitative variables, encoding categorical inputs as
quantitative dummy variables, thus allowing for transforming the problem into the stan-
dard regression setup [5] (iii) DeepGP (Deep Gaussian Processes), that is particularly
suited for non-stationnary models [2]. We show that categorical variables are properly
taken into account by the Kriging and by the PCE adaptations, and that mixed variables
methods outperform the same methods applied per category, and even more with smaller
samplings. DeepGP, that was not adapted to qualitative variables, does not need any
classification or boundaries, and reaches the performance of the adapted methods. How-
ever, it needs repetitions for the most complex soils, with a much higher numerical cost,
that is multiplied by the number of categorical variables. Finally, we perform a global
sensitivity analysis with the help of the two surrogate models with the best accuracy. The
results show that they give the same ranking of the importance of the input parameters.

[1] N. Carluer, C. Lauvernet, D. Noll, and R. Muñoz-Carpena. Defining context-specific
scenarios to design vegetated buffer zones that limit pesticide transfer via surface
runoff. Science of The Total Environment, 575:701–712, 2017.

[2] A. Damianou and N. D. Lawrence. Deep Gaussian processes. volume 31 of Proceedings
of Machine Learning Research, pages 207–215, 2013. PMLR.

[3] C. Lauvernet and C. Helbert. Metamodeling methods that incorporate qualitative
variables for improved design of vegetative filter strips. Reliability Engineering &
System Safety, 204:107083, 2020.

[4] R. Muñoz-Carpena, J.E. Parsons, J.W. Gilliam. Modeling hydrology and sediment
transport in vegetative filter strips. Journal of Hydrology, 214(1-4):111–129, 1999.

[5] X. Zhu and B. Sudret. Sparse polynomial chaos expansions for mixed categorical /
continuous inputs. (in preparation).
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We perform a global sensitivity analysis of an ocean biogeochemical (OBGC) model with 

regard to the sensitivity of its input parameters. OBGC models involve a wide variety of 

processes (e.g., carbon cycling, air-sea interactions and gas transfer, and components of 

the marine ecosystem) controlled by numerous input parameters which are not precisely 

known. OBGC model simulations are highly uncertain in model parameterization [1]. 

Global sensitivity analysis (GSA) aims to identify the parameters whose uncertainty has 

the largest impact on the variability of a simulated quantity of interest – for instance net 

primary production in the ocean. In this study we consider the biogeochemical model 

Regulated Ecosystem Model 2 (REcoM2) [2], coupled with the MIT General Circulation 

Model (MITgcm) [3] in a 1D configuration at two ocean biogeochemical time series 

stations with different environmental conditions – the Bermuda Atlantic Time-series 
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Study (BATS) the North Atlantic and the Dynamique des Flux Atmosphériquesen 

Méditerranée (DYFAMED) in the Mediterranean Sea. We analyze the variance-based 

Sobol indices [4] for GSA of ten selected biogeochemical parameters of REcoM2, by 

applying a Monto Carlo method for sampling from parameter space of the selected 

parameters. Sobol indices quantify the respective influence of uncertain parameters either 

through their direct effect (first order sensitivity index), through their mutual interaction 

(higher order sensitivity index), or collective influence of all perturbed parameters (total 

order sensitivity index). 

 

In this study, we set the focus on the first and total order sensitivity indices. We found out 

that the chlorophyll degradation and grazing parameters are most influential for 

chlorophyll-a concentration simulation. For net primary production, parameters related to 

photosynthesis and grazing are particularly important. The total order indices indicate that 

some parameters have mutual dependencies. 

 

[1] Schartau, M., et al., Reviews and syntheses: parameter identification in marine 

planktonic ecosystem modelling. Biogeosciences, 14(6):1647-1701, 2017. 

[2] Hauck, J., et al., Seasonally different carbon flux changes in the Southern Ocean in 

response to the southern annular mode. Global Biogeochem Cycles, 27(4):1236-1245, 

2013. 

[3] Marshall, J., et al., A finite-volume, incompressible Navier Stokes model for studies 

of the ocean on parallel computers. Journal of Geophysical Research-Oceans, 

102(C3):5753-5766, 1997. 

[4] Sobol, I.M., Global sensitivity indices for nonlinear mathematical models and their 

Monte Carlo estimates. Mathematics and Computers in Simulation, 55(1-3)271-280, 

2001. 
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The Competence Centre on Modelling of the European Commission (EC) has been developing 

an online tool called Siml@b in order to allow modellers performing Global Sensitivity 

Analysis (GSA) of their models. The tool is developed with R Shiny Environment. 

 

A possible classification of the main existing GSA methods can be the following: 

Moment-free methods: which do not rely on any specific moment of y (like the variance). 

They quantitatively assess how different is the unconditional random variable y w.r.t. the 

conditional random variable y|xi. One such quantitative importance measure is the one proposed 

by Borgonovo (2007). 

Variance-based methods: which owe their groundings to the work of Ilya M. Sobol' (1993). 

They assess the so-called Sobol' indices which are the quantitative measure of importance of 

interest. These indices stem from the analysis of variance (ANOVA decomposition) of y. 

Screening methods: Screening methods are used for factor fixing setting. Screening methods 

are also named qualitative methods because they do not allow the ranking of the input variables 

by order of importance. Morris method (1991) is an instance of screening method. 

 

 

 
 

 

Some methods require specific sampling designs (Design-Driven), some others not (Given-

Data). Currently, in Siml@b, only Given-Data approaches in green are implemented but its 103
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extension to further methods is ongoing. 

 

Requirements for using GIVEN DATA  methods 

The dataset must be an array [X,y] of size N•(d+1). The first d columns must contain the Monte 

Carlo sample of x (i.e. input vector), the last column the corresponding values of the model 

response y (i.e. scalar output).  

Requirements for using DESIGN-DATA  methods 

A specific design is required in this case and one can generate the latter with the tool called 

Sampler. Then, after running the model and collecting the dataset one can create an array [X,y], 

the size of which depends on the method used.  

 

Datasets must be stored in a csv or txt file on the user’s computer, and may contain the 

variables’ name in the first row. Note that Excel files are not handled. 

Sim@b appears as a really versatile and user-friendly tool. Uncertainty and sensitivity analyses, 

Sobol’ sensitivity indices, and corresponding graphics, can be obtained with a few steps. The 

execution of the program usually takes only a short time and can be carried out by people 

without any experience in programming simply by uploading the data file. A comprehensive 

guide is also available. 

 

At the SAMO 2022 Conference, a demonstration will be performed and specific cases will be 

discussed like the case of dependent input variables (see Rosenblatt 1952 and Mara & Becker 

2021). 
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474-496, 2007.  
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Analysis of experimental or simulation data is often hampered by the sheer number of
input variables. Predictions become unreliable due to the notorious “curse of dimension-
ality”, and visualisation and optimisation become virtually impossible in spaces of even
moderate dimensionality. To mitigate all these difficulties, screening inputs for relevance
has long been a basic tool in data analysis. Latterly it has been shown that the effective-
ness of screening is enhanced dramatically by combining inputs to find the most amenable
basis for screening [1]. One seeks a rotation Θ

z = Θx

which concentrates the relevant inputs in the first few dimensions of z. The rotation is
optimised according to some measure of relevance, then z is truncated to those dimensions
whose relevance exceeds a chosen threshold. The reduced input space is called an active
subspace, and is often of remarkably small dimension.

Active subspace approaches [1] use local sensitivity measures directly on experimental and
simulation data, which may be noisy. This invites issues regarding computational expense
and exorbitant data requirements to cover the entire input space and obtain accurate
estimates of relevance. Aside from which, it is surely desirable in many applications to
subtract noise from the underlying data before searching for an active subspace. Clearly
these issues may be tackled, if not entirely removed, by emulating the underlying data
with a smoothed surrogate, and seeking an active subspace for that. An appropriate
surrogate eliminates much of the noise and facilitates efficient, even analytic, computation
of relevance from limited data.

This work uses a Gaussian Process (GP) surrogate for which relevance is measured an-
alytically. Relevance measures are global, the well-known Sobol indices, although other
variance-based measures may be considered. The GP uses a smooth ARD squared expo-
nential kernel

cov [[y|x] , [y|x′]] = ky(x, x
′) = F exp

(
−(x− x′)T [Λ]−2 (x− x′)

2

)
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where [Λ] is a diagonal matrix of ARD lengthscales.

An efficient algorithm is formulated to find Θ which optimally drains relevance from
dimensions to be eliminated, without wasting resources distributing relevance amongst
retained dimensions. This algorithm is applied to standard test functions taking 5 input
dimensions, to locate their active subspaces.

It is well known that GPs are very vulnerable to the curse of dimensionality, performing
poorly for input dimensions greater than 6 or so. To mitigate this, we investigate building
the active subspace from the bottom up. All but 5 input dimensions are initially ignored
(effectively regarded as sources of noise). The active subspace technique is used to reduce
this input space to 3 dimensions. This active subspace is then enhanced with two of the
inputs previously ignored to generate a new dataset with 5 inputs. Iterating through GP
regression and subsequent active subspace location and enhancement enables one to add
many dimensions gradually, without ever falling prey to the curse of dimensionality. This
technique is applied to a suite of test functions, this time taking 10 input dimensions.
The bottom-up approach is crucially enabled by the novel combination of surrogates with
active subspace construction, exploiting the ability to ignore variation of inputs we wish
to defer by relegating it to noise in the surrogate.

[1] P. G. Constantine. Active Subspaces: Emerging Ideas for Dimension Reduction in
Parameter Studies. Society for Industrial and Applied Mathematics, 2015.
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The paper concentrates on digital transformation measurement and the relationship between digital transformation 

and economic growth. The digital transformation is underway and accelerates. The established metrics and 

assessment instruments cannot keep up with the rapid digital transformation pace[1]. The [2]identifies many gaps in 

the current framework of measuring digital transformation and recommends improving the international 

comparability of the indicators currently in use. Also, a better adaptation of current statistical systems to rapid changes 

brought about by the digital revolution is strongly recommended. The literature covers several indices used to assess 

the development of the digital economy, starting from the Information Society Index (1997), E-Readiness Index 

(2000), Technology Achievement Index (2001), E-Government Development Index (2002), ICT Development Index 

(2002), Networked Readiness Index (2002), Digital Access Index (2003), Knowledge Economy Index (2005), Digital 

Opportunity Index (2005), ICT Opportunity Index (2005), ICT Diffusion Index (2006), and ending up with the newest 

one – the Digital Economy and Society Index (2014). These measures propose a holistic framework for assessing the 

digital revolution's multi-faceted impact on society and economies 

Our paper analyses the latest index, the Digital Economic and Society Index (DESI), proposed by the European Union 

[3]. It is based on 37 individual indicators and evaluates the digital transformation of EU countries from the point of 

view of e-business, e-society and e-administration. So far, the DESI has been used to assess the degree of digital 

economy development in particular countries. To the best of our knowledge, the methodology proposed in the DESI 

has not been verified or attempted to be improved yet. 

We wish to fill this gap, aiming to improve the DESI and investigating its relationship with economic growth. The 

paper examines, using the sensitivity-based analysis [4], whether methodological modifications to the DESI structure 

boost its ability to capture the digitalisation digitalization of society and economies. We consider whether the 

selection of weights of variables included in the DESI is optimal or could be improved. Additionally, we use panel 

data models to check if changes in the DESI influence EU economies' growth. The research questions that will be 

answered in this paper are: (1) can we improve the DESI as a composite indicator of the digital transformation of the 

EU-28? and (2) could the DESI be used as a GDP per capita forecast measure for the EU-28? To answer those 

research questions, we use data from the 2015-2020 DESI reports.  

 

Results 

Our analysis of the Digital Economic and Society shows that besides reducing the set of variables, it would also be 

necessary to drastically change the value of the weights assigned to each pillar, subpillar, and individual variables. 

The analysis pointed to significant discrepancies between the original weights and the optimized ones. The issues 107
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related to connectivity, the importance of which should be close to 0.60, have the most substantial effect on the final 

ranking. Due to the strong correlation, it is challenging to develop a well-balanced index without assigning zero 

weights to some elements. Moreover, composite indicators are inconsistent as linear aggregation is a poor way of 

summarising the information that, perhaps, should not be summarised in the first place. Combining certain pillars or 

modifying their content to provide conceptual coherence should perhaps be considered. 

Our results are of significant importance to policymakers regarding the measurement, support, and deepening of 

digital transformation. Existing metrics and assessment instruments fail to keep up with the rapid pace of digital 

transformation. To measure digital transformation, countries use existing indicators drawn from various areas, 

including education, innovation, trade, economic and social issues, or a composite indicator such as the DESI for EU 

countries. Our results reveal that for current and quick analyses of digital transformation development or some 

international comparisons in this area, it is appropriate to consider only several indicators such as the coverage of 

broadband (fixed, fast, 4G), level of software skills, and the percentage of enterprises analyzing big data and selling 

products and services online. These indicators are most crucial from the digital transformation level point of view. 

As digital technologies continue to reshape society and the economy dramatically, many countries are pursuing large-

scale supporting initiatives in this area. Our study indicates that EU countries should develop fast broadband plus 4G 

technologies as well as invest in all education programmes aimed to create a new generation capable of adapting and 

working with ICTs. Citizens and employees with high digital skills are of common interest to both the state and 

employers, so building partnerships between the state and private sector to make people more familiar with ICTs is 

strongly recommended. 

Additionally, our study confirms that the DESI is useful for explaining changes in GDP per capita. This is good news 

for the poorest EU countries because the gap between rich and poor countries in the European Union can be closed 

or eliminated by fast and intensive digital transformation. It is crucial for each country that uses its natural resources 

(such as oil or minerals) or export trade to ensure GDP growth and is still unable to take off to reach a high 

development stage. 

 

[1] OECD (2019a). OECD Skills Outlook 2019: Thriving in a Digital World. Paris. Retrieved from 

https://doi.org/10.1787/df80bc12-en. 

[2] OECD (2019b). Going Digital: Shaping Policies, Improving Lives. Going Digital: Shaping Policies, Improving 

Lives. https://doi.org/10.1787/9789264312012-en 

[3] European Commission. (2020). Digital Economy and Society Index 2020: Methodological note. Retrieved from 

http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=67082 

[4] Becker, W.; Saisana, M.; Paruolo, P.; Vandecasteele, I. (2017). Weights and importance in composite 

indicators: Closing the gap. Ecological Indicators, 80, 12–22, https://doi.org/10.1016/j.ecolind.2017.03.056 
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The rapid and unavoidable change of the countries’ energy systems composition is a matter of 

global interest in various science fields and the public policymakers. Several institutions dedicated 

to conducting behavior analysis in the systems of energy forecast different future scenarios 

regarding the composition of the final energy consumption on a global scale in the short term.  

These differences in the results are due to the criteria that organizations and governments take 

into consideration to forecast the scenarios. The lack of an established methodology to conduct 

these types of assessments creates several forecasts and different understandings of the energy 

system. In Ecuador, the energy system has not been completely evaluated and the results of the 

energy forecast of some undertaken studies differ from each other in their final scenario making 

it difficult to know the health of the system and anticipate the preparation of public policies. 

Therefore, this work aims to develop a methodology based on MuSIASEM grammar to build 

future energy scenarios based on the understanding of the scarcity of primary energy sources and 

the dynamics of the end-use energy in the different compartments of socioeconomic systems, 

applied in the Ecuador system by 2035 

 

The construction of the Ecuadorian energy system scenario is based on the structuration of the 

MuSIASEM grammar, in which the energy system elements and their relationship with the 

socioeconomic sectors are shown at different levels and scales. 

Energy systems join functional (example: electricity production) and structural (example: 

thermal/hydraulic energy) subcategories within a metabolic route, so these make it possible to 

join two non-equivalent points of view of the metabolic pattern of a given society. For the 

generation of the accounting of flows (example: electricity/fuels) and funds (example: power 

capacity/ human activity). Moreover, within the energy grammar, it is necessary to take in mind 

the concepts of primary energy sources (PES), energy carriers (EC), energy systems (ES), and 

energy end uses (EU) 

 

The 2035 energy demand for Ecuador indicates that it will exist an increase in the fuel and 

electricity metabolic rate. The increase will be from 2,6 to 4 MJ/h of fuel, and from 0 to 0,5 MJ/h 

of electricity for the Agriculture sector, from 7,4 and 11,3 MJ/h to 15 and 30 MJ/h of electricity 

and fuel respectively for the Building and Manufacturing sector, from 0 to 2 MJ/h of electricity 109
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and from 309 to 300 MJ/h of fuel for the Transport sector, from 4,5 to 5 MJ/h of electricity and 

from 4 to 6 MJ/h of fuel for the Service and Government sector, from 0,2 to 0,3 MJ/h in electricity 

and from 0,3 to 0,5 MJ/h of fuels for the Households sector. Finally, the sector that concentrates 

the greater consumption by work hour will be the Energy sector, in which case the energetic 

intensity increases from 114,7 to 115 MJ/h of electricity and from 750,4 to 810 MJ/h of fuel. The 

electricity generation system shows a gross energy increase of 28.083 GWH produced in 2017 to 

45.463 GWH by 2035.  

The scenario considers the production mix extension to hydro-power and renewable energies 

while the thermal generation is reduced from 26% to 17% from the total generation of electricity. 

This allows maintaining the CO2 emissions at the year base levels of 6.477 KTon CO2. 

 

 

[1] Castro Verdezoto, P. L., Vidoza, J. A., & Gallo, W. L. R., 2019. Analysis and projection of energy 

consumption in Ecuador: Energy efficiency policies in the transportation sector. Energy Policy, 

134(November 2018). https://doi.org/10.1016/j.enpol.2019.110948 

[2] Equinor, 2019. Energy Perspectives 2019. Long-term macro and market outlook 

[3] Giampietro, M., Mayumi, K. & Sorman, A.H., 2012. The Metabolic pattern of societies  : where 

economists fall short. London: Routledge 

[4] Giampietro, M., Diaz-Maurin, F., 2014b. The Energy Grammar. In: Giampietro, M., Aspinall, R.J., 

Ramos-Martin, J., Bukkens, S.G.F. (Eds.), Resource Accounting for Sustainability: The Nexus 

between Energy, Food, Water and Land Use. Routledge, Abingdon, pp. 90–115. 

[5] Giampietro M, Sorman AH., 2012. Are energy statistics useful for making energy scenarios? 

Energy;37:5e17.https://doi.org/10.1016/j.energy. 2011.08.038 

[6] Greenpeace, 2019. https://www.greenpeace.org/international/ 

[7] International Energy Agency IEA, 2019. Energy Technology Perspectives. 

https://www.iea.org/topics/energy-technology-perspectives 

[8] Odum, H.T., 1996. Environmental Accounting: Emergy and Environmental Decision Making. John 

Wiley, New York. 

[9] Parra Narváez, R., 2015. Factor de emisión de CO2 debido a la generación de electricidad en el 

Ecuador durante el periodo 2001-2014. ACI Avances En Ciencias e Ingenierías, 7(2). 

https://doi.org/10.18272/aci.v7i2.269 

[10] Parra, R., Di Felice, L. J., Giampietro, M., & Ramos-Martin, J., 2018. The metabolism of oil 

extraction: A bottom-up approach applied to the case of Ecuador. Energy Policy, 122(July), 63–74. 

https://doi.org/10.1016/j.enpol.2018.07.017 

[11]  Pinzón, K., 2018. Dynamics between energy consumption and economic growth in Ecuador: A 

granger causality analysis. Economic Analysis and Policy, 57, 88–101. 

https://doi.org/10.1016/j.eap.2017.09.004 

[12]  Velasco-Fernández, R. (2017). The pattern of Socio-Ecological Systems. Thesis Phd 

[13]  Velasco-Fernández, R., Giampietro, M., & Bukkens, S. G. F. (2018). Analyzing the energy 

performance of manufacturing across levels using the end-use matrix. Energy, 161, 559–572. 

https://doi.org/10.1016/j.energy.2018.07.122 

[14] World Energy Council-WEC, 2019.  https://www.worldenergy.org/g 
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Models in the biological and environmental sciences typically have many free parameters 
(factors) [1]. Calibration of these parameters often requires empirical data, sometimes costly or 
simply impossible to obtain, which introduces uncertainty into the model. However, according 
to the ‘sparsity of factors’ principle, very often only a small subset of factors in a system has a 
significant influence on the system output [2]. As such, it can be extremely beneficial for model 
development to identify unimportant parameters, so that they may be set to a fixed value, and 
the most important factors, so that every effort can be made to accurately estimate this group. 
This can greatly decrease model complexity, while increasing trust in the model. 

The Elementary Effects method (EE) [3] has received increased attention in recent years as a 
simple and computationally efficient global screening approach. EE is designed to identify 
(non-)influential parameters and produces a qualitative ranking of factor importance. However, 
the current body of literature about EE almost exclusively treats the case where all input factors 
are dimensionless and take values in the unit interval. Applying EE in its current form to real-
life models might lead to erroneous ranking results. 

Here, we therefore discuss the application of EE to dimensional models and models where input 
factors take values on arbitrary intervals or contain inputs of integer or Boolean type. We show 
that scaling of the effects in the input direction by a function of the input range is necessary in 
such cases to prevent erroneous ranking results while obtaining results consistent with the 
general notion of sensitivity. Furthermore, we propose an alternative normalized dimensionless 
sensitivity index based on recent advances in the field. We show that this index provides a 
standardized way to identify (non)-influential factors, while avoiding the issue of scaling the 
effects in the output direction. Finally, we consider whether spread (as introduced by 
Campolongo et al. [4]) and discrepancy of the sampled parameter sets can be used as proxies for 
the ability to accurately rank factors. 

[1] G. Qian and A. Mahdi. Sensitivity analysis methods in the biomedical sciences, Math. 
Biosci., 323:108306, 2020. 

[2] G. E. P. Box and R. D. Meyer. An analysis for unreplicated fractional factorials, 
Technometrics, 28(1):11–18, 1986. 

[3] M. D. Morris. Factorial sampling plans for preliminary computational experiments, 
Technometrics, 33(2):161–174, 1991. 

[4] F. Campolongo et al. An effective screening design for sensitivity analysis of large models, 
Environmental Modelling and Software, 22(10):1509–1518, 2007. 
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Sobol’ indices quantify the importance of a function’s inputs to explaining the output’s
variance [3, Appendix A]. Normalized Sobol’ indices, or sensitivity indices, have been
used in a variety of applications for global sensitivity analysis. Monte Carlo methods
present an efficient approach for approximating these importance scores. In this talk,
we will describe our implementation of such techniques into QMCPy [1], an open source
Quasi-Monte Carlo library in Python. QMCPy utilizes algorithms from [2] to adaptively
select an appropriate number of samples so the approximation is guaranteed to be within
an desired tolerance of the true sensitivity indices.

[1] Sou-Cheng T. Choi, Fred J. Hickernell, R. Jagadeeswaran, Michael J. McCourt, and
Aleksei G. Sorokin. QMCPy: A Quasi-Monte Carlo Python library, 2020+.

[2] Llúıs Antoni Jiménez Rugama and Laurent Gilquin. Reliable error estimation for
Sobol’ indices. Statistics and Computing, 28(4):725–738, July 2018.

[3] Art B. Owen. Monte Carlo theory, methods and examples. 2018.
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